Nav: Home

NUS engineers invent smart microchip that can self-start and operate when battery runs out

May 03, 2018

The Internet of Things (IoT), while still in its infancy, is shaping the future of many industries and will also impact our daily lives in significant ways. One of the key challenges of moving IoT devices from concept to reality is to have long-lasting operation under tightly constrained energy sources, thus demanding extreme power efficiency. IoT devices - such as sensors - are often deployed on a massive scale and in places that are usually remote and difficult to service regularly, thus making their self-sufficiency essential.

Currently, batteries in IoT devices are much larger and up to three times more expensive than the single chip they power. Their size is determined by the sensor node lifetime, which directly affects how often they need to be changed. This has an important bearing on maintenance cost and impact on the environment when batteries are disposed. To extend the overall lifetime, the battery is usually recharged slowly by harvesting some limited power from the environment, such as using a solar cell. However, existing IoT devices cannot operate without battery, and small batteries are fully discharged more frequently. Hence, battery miniaturisation often results in highly discontinuous operation of IoT devices, as they stop functioning every time the battery runs out of energy.

To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. BATLESS is designed with a novel power management technique that allows it to self-start and continue to function under dim light without any battery assistance, using a very small on-chip solar cell. This research breakthrough substantially reduces the size of batteries required to power IoT sensor nodes, making them 10 times smaller and cheaper to produce. The breakthrough has been presented at the International Solid-State Circuits Conference (ISSCC) 2018 conference in San Francisco, the premier global forum for presenting advances in solid-state circuits and systems-on-a-chip.

The leader of the NUS research team, Associate Professor Massimo Alioto from the Department of Electrical and Computer Engineering at the NUS Faculty of Engineering, said "We have demonstrated that batteries used for IoT devices can be shrunk substantially, as they do not always need to be available to maintain continuous operation. Tackling this fundamental problem is a major advancement towards the ultimate vision of IoT sensor nodes without the use of batteries, and will pave the way for a world with a trillion IoT devices."

Operate without battery

Battery indifference is the ability for IoT devices to continue operations, even when the battery is exhausted. It is achieved by operating in two different modes - minimum-energy and minimum-power. When the battery energy is available, the chip runs in minimum-energy mode to maximise the battery lifetime. However, when the battery is exhausted, the chip switches to the minimum-power mode and operates with a tiny power consumption of about half a nanoWatt - this is about a billion times smaller than the power consumption of a smartphone during a phone call. Power can be provided by a very small on-chip solar cell that is about half a square millimetre in area, or other forms of energy available from the environment, such as vibration or heat.

The chip's ability to switch between minimum energy and minimum power mode translates into aggressive miniaturisation of batteries from centimetres down to a few millimetres. The BATLESS microchip enables the uncommon capability to uninterruptedly sense, process, capture and timestamp events of interest, and for such valuable data to be wirelessly transmitted to the cloud when the battery becomes available again. Despite being in minimum-power mode when battery is not available, the reduced speed of the microchip is still adequate for numerous IoT applications that need to sense parameters that vary slowly in time, including temperature, humidity, light, and pressure. Among many other applications, BATLESS is very well suited for smart buildings, environmental monitoring, energy management, and adaptation of living spaces to occupants' needs.

Assoc Prof Alioto added, "BATLESS is the first example of a new class of chips that are indifferent to battery charge availability. In minimum-power mode, it uses 1,000 to 100,000 times less power, compared to the best existing microcontrollers designed for fixed minimum-energy operation. At the same time, our 16-bit microcontroller can also operate 100,000 times faster than others that have been recently designed for fixed minimum-power operation. In short, the BATLESS microchip covers a very wide range of possible energy, power, and speed trade-offs, as allowed by the flexibility offered through the two different modes."

Self-start without battery

BATLESS is also equipped with a new power management technique that enables operations to be self-started, while being powered directly by the tiny on-chip solar cell, with no battery assistance. The team had demonstrated this at 50-lux indoor light intensity, which is equivalent to the dim light available at twilight, and corresponds to nanoWatts of power. This makes BATLESS indifferent to battery availability, addressing a previously unsolved challenge in battery-less chips.

Next steps

The NUS Engineering team is now exploring new solutions to build complete battery indifferent systems that cover the entire signal chain from sensor to wireless communications, thus expanding the current work on microcontrollers and power management.

The research team aims to demonstrate a solution that shrinks the battery to millimetres, with the long-term goal of completely eliminating the need for it. This will be a major step towards the realisation of the IoT vision worldwide, and also make our planet greener and smarter.
-end-


National University of Singapore

Related Solar Cell Articles:

Windows will soon generate electricity, following solar cell breakthrough
Semi-transparent solar cells that can be incorporated into window glass are a 'game-changer' that could transform architecture, urban planning and electricity generation, Australian scientists say in a paper in Nano Energy.
Ultrathin organic solar cell is both efficient and durable
Scientists have succeeded in creating an ultrathin organic solar cell that is both highly efficient and durable.
Layered solar cell technology boosts efficiency, affordability
Researchers from CU Boulder have created a low-cost solar cell with one of the highest power-conversion efficiencies to date, by layering cells and using a unique combination of elements.
Anti-solar cells: A photovoltaic cell that works at night
What if solar cells worked at night? That's no joke, according to Jeremy Munday, professor in the Department of Electrical and Computer Engineering at UC Davis.
Promising discovery could lead to a better, cheaper solar cell
McGill University researchers have gained tantalizing new insights into the properties of perovskites, one of the world's most promising materials in the quest to produce a more efficient, robust and cheaper solar cell.
Biological material boosts solar cell performance
Next-generation solar cells that mimic photosynthesis with biological material may give new meaning to the term 'green technology.' Adding the protein bacteriorhodopsin (bR) to perovskite solar cells boosted the efficiency of the devices in a series of laboratory tests, according to an international team of researchers.
Experiments show dramatic increase in solar cell output
Researchers at MIT and Princeton have found a way to increase the output of silicon solar cells by allowing a single photon to release two electrons in the silicon.
Winds of change...Solar variability weakens the Walker cell
An international team of researchers has found robust evidence for signatures of the 11-year sunspot cycle in the tropical Pacific.
Improving solar cell efficiency with a bucket of water
Beth Parks has devised an astonishingly simple way to overcome a limitation of solar cells -- a bucket of water.
Solar panels for yeast cell biofactories
In a study in Science, a multidisciplinary team led by Core Faculty member Neel Joshi and Postdoctoral Fellows Junling Guo and Miguel Suástegui at Harvard's Wyss Institute for Biologically Inspired Engineering and John A.
More Solar Cell News and Solar Cell Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.