Nav: Home

COPD-associated inflammation halted in model experiment

May 03, 2018

Chronic obstructive pulmonary disease, or COPD for short, is believed to be the third most common cause of death worldwide. However, because the underlying mechanism is still largely unknown, today's treatments can only slow progression of the disease. Scientists at Helmholtz Zentrum München have now reported a previously unknown pathogenic mechanism, which they have already been able to prevent in the laboratory. Their findings are reported in EMBO Molecular Medicine.

Cigarette smoking and general environmental pollution pose far and away the greatest risks for COPD and lead to an inflammatory reaction in the airways and lung tissue. As a result, sufferers develop chronic cough, sputum production and shortness of breath. In the long term, lung tissue is destroyed, which makes breathing more difficult.

In a recent paper, a team led by Dr. Ali Önder Yildirim shed new light on the inflammatory process. "We focused on tertiary lymphoid organs* in the bronchi," explains Yildirim, one of the acting directors of the Institute of Lung Biology at Helmholtz Zentrum München, a member of the German Center for Lung Research (DZL). Specifically, the researchers studied what is known as inducible bronchus-associated lymphoid tissue, or iBALT for short. "It is believed that the development of iBALT plays a key role in the deterioration of COPD ? but until now it was unclear exactly how iBALT forms," says the head of the study.

Therefore, the lung specialists looked for known processes in other lymphoid tissues. In this context, their attention was drawn to the metabolism of oxysterols. Oxysterols are derivatives of cholesterol that play a role in a wide range of biological processes, including the positioning of immune cells in lymphoid tissue.

"We wanted to find out whether that is also the case around the lungs and specifically in cigarette-smoke-induced COPD," Yildirim says. In fact, the researchers found elevated levels of enzymes involved in oxysterol metabolism together with immune cells that migrate into the tissue both in the experimental model and in the lungs of COPD patients. Further experiments also showed that iBALT formation is inhibited if the metabolic enzymes are absent. Their absence also prevented the migration of immune cells and damage to the lungs despite exposure to cigarette smoke.

The scientists then attempted to recreate this effect pharmacologically by blocking the oxysterol pathway with an inhibitor**, which they found prevented the immune cell migration following cigarette smoke irritation and therefore iBALT formation in the experimental model. "Our future goal is to transfer the results from the model to humans with a view to intervening in the development of COPD," Ali Önder Yildirim says. "There is still a lot of work to do, however we are very much looking forward to it."
-end-
Further Information

* The lymphatic system, with the lymphatic vessels acting as conduits, is the second most important transport system in the human body next to the circulatory system. It specializes in the transport of nutrients and waste products and also disposes of pathogens, such as bacteria, and foreign bodies in the lymph nodes. Tertiary lymphoid organs develop later in various organs near sites of inflammation. They are, to put it simply, improvised lymph nodes.

** Specifically, the team used the drug clotrimazole, an approved antimycotic.

Original Publication: Jia, J. & Conlon, TM. et al. (2018): Cholesterol metabolism promotes B?cell positioning during immune pathogenesis of chronic obstructive pulmonary disease. EMBO Molecular Medicine, DOI: 10.15252/emmm.201708349

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Comprehensive Pneumology Center (CPC) is a joint research project of the Helmholtz Zentrum München, the Ludwig-Maximilians-Universität Clinic Complex and the Asklepios Fachkliniken München-Gauting. The CPC's objective is to conduct research on chronic lung diseases in order to develop new diagnosis and therapy strategies. The CPC maintains a focus on experimental pneumology with the investigation of cellular, molecular and immunological mechanisms involved in lung diseases. The CPC is a site of the Deutsches Zentrum für Lungenforschung (DZL). http://www.helmholtz-muenchen.de/ilbd

The German Center for Lung Research (DZL) pools German expertise in the field of pulmonology research and clinical pulmonology. The association's head office is in Giessen. The aim of the DZL is to find answers to open questions in research into lung diseases by adopting an innovative, integrated approach and thus to make a sizeable contribution to improving the prevention, diagnosis and individualized treatment of lung disease and to ensure optimum patient care. http://www.dzl.de/index.php/en

Contact for the media: Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific contact: Dr. Ali Önder Yildirim, Helmholtz Zentrum München - German Research Center for Environmental Health, Comprehensive Pneumology Center, Max-Lebsche-Platz 31, 81377 München, Germany - Tel. +49 89 3187 4037 - E-mail: oender.yildirim@helmholtz-muenchen.de

Helmholtz Zentrum München - German Research Center for Environmental Health

Related Immune Cells Articles:

How self-reactive immune cells are allowed to develop
A research team at Lund University in Sweden has found the mechanism that controls the growth of B1-cells in mice.
Identification of new populations of immune cells in the lungs
In an article published in Nature Communications, the Immunophysiology Laboratory of the GIGA Institute, headed by Prof.
A genomic barcode tracker for immune cells
A new research method to pinpoint the immune cells that recognise cancer could significantly change how we treat the disease.
Scientists reminded immune cells on what side they should be
International group of scientists in the joint study of the laboratory of the Wistar Institute, University of Pittsburgh and I.M.
Dead cells disrupt how immune cells respond to wounds and patrol for infection
Immune cells prioritise the clearance of dead cells overriding their normal migration to sites of injury.
Study gives new perspective on production of blood cells and immune cells
A new study provides a thorough accounting of blood cell production from hematopoietic stem cells.
Gut immune cells play by their own rules
Only a few vaccines -- for example, against polio and rotavirus -- can be given orally.
Revealed: How the 'Iron Man' of immune cells helps T cells fight infection
The immune system's killer T cells are crucial in fighting viral infections.
A bad influence: the interplay between tumor cells and immune cells
Research at Huntsman Cancer Institute (HCI) at the University of Utah (U of U) yielded new insights into the environment surrounding different types of lung tumors, and described how these complex cell ecosystems may in turn ultimately affect response to treatment.
Immune cells help older muscles heal like new
The immune system's macrophage cells are critical to growing muscle tissues in a lab, say the biomedical engineers at Duke University who earlier reported the world's first self-healing lab-grown muscles.
More Immune Cells News and Immune Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.