Antimatter study to benefit from recipe for ten-fold spatial compression of plasma

May 03, 2018

An international team of physicists studying antimatter have now derived an improved way of spatially compressing a state of matter called non-neutral plasma, which is made up of a type of antimatter particles, called antiprotons, trapped together with matter particles, like electrons. The new compression solution, which is based on rotating the plasma in a trapped cavity using centrifugal forces like a salad spinner, is more effective than all previous approaches. In this study published in EPJ D, the team shows that--under specific conditions--a ten-fold compression of the size of the antiproton cloud, down to a radius of only 0.17 millimetres, is possible. These findings can be applied in the field of low-energy antimatter research, charged particle traps and plasma physics. Further, this work is part of a larger research project, called AEgIS, which is intended to achieve the first direct measurement of the gravitational effect on an antimatter system. The ultimate goal of the project, which is being pursued at CERN, the Particle Physics Laboratory in Geneva, Switzeeuropeaand, is to measure the acceleration of antimatter--namely antihydrogen--due to Earth's gravity with a precision of 1%.

In this study, the authors use a plasma manipulation method called the rotating wall, which they have optimised. They employ specially tailored electrical fields, changing in time and space inside the trap volume, to induce modification of the rotation frequency. Due to the resultant centrifugal force, the plasma rotates faster and is compressed.

Specifically, the proportion of trapped antiprotons under compression is initially less than 0.1% of the electrons. During the procedure the number of electrons is reduced so as to maximise compression. To do so, antiprotons and electrons trapped in the same volume rotate around the trap axis. Interestingly, for a given number of particles, the faster the rotation, the higher their spatial density becomes as the plasma radius continues to shrink.
-end-
References: S. Aghion, C. Amsler, G. Bonomi, R. S. Brusa, M. Caccia, R. Caravita, F. Castelli, G. Cerchiari, D. Comparat, G. Consolati, A. Demetrio, L. Di Noto, M. Doser, C. Evans, M. Fanì, R. Ferragut, J. Fesel, A. Fontana, S. Gerber, M. Giammarchi, A. Gligorova, F. Guatieri, S. Haider, A. Hinterberger, H. Holmestad, A. Kellerbauer, O. Khalidova, D. Krasnický, V. Lagomarsino, P.Lansonneur, P. Lebrun, C. Malbrunot, S. Mariazzi, J. Marton, V. Matveev, Z. Mazzotta, S. R. Müller, G. Nebbia, P. Nedelec, M. Oberthaler, N. Pacifico, D. Pagano, L. Penasa, V. Petracek, F. Prelz, M. Prevedelli, B. Rienaecker, J. Robert, O. M. Røhne, A. Rotondi, H. Sandaker, R. Santoro, L. Smestad, F. Sorrentino, G. Testera, I. C. Tietje, E. Widmann, P. Yzombard, C. Zimmer, J. Zmeskal, and N. Zurlo (2018), Compression of a mixed antiproton and electron non-neutral plasma to high densities, Eur. Phys. Jour. D, Eur. Phys. J. D (2018) 72: 76, DOI 10.1140/epjd/e2018-80617-x

Springer

Related Antimatter Articles from Brightsurf:

Timing the life of antimatter particles may lead to better cancer treatment
Experts in Japan have devised a simple way to glean more detailed information out of standard medical imaging scans.

New calculation refines comparison of matter with antimatter
An international collaboration of theoretical physicists has published a new calculation relevant to the search for an explanation of the predominance of matter over antimatter in our universe.

Scientists make step towards understanding the universe
Physicists from the University of Sheffield have taken a step towards understanding why the universe is made of mostly matter and not antimatter, by studying the difference between the two.

Where did the antimatter go? Neutrinos shed promising new light
We live in a world of matter -- because matter overtook antimatter, though they were both created in equal amounts when our universe began.

T2K insight into the origin of the universe
Lancaster physicists working on the T2K major international experiment in Japan are closing in on the mystery of why there is so much matter in the universe, and so little antimatter.

Strongest evidence yet that neutrinos explain how the universe exists
New data throws more support behind the theory that neutrinos are the reason the universe is dominated by matter.

APS tip sheet: Origins of matter and antimatter
Study suggests an 'axiogenesis' mechanism for the explanation of the matter to antimatter ratio in the Universe

The axion solves three mysteries of the universe
A hypothetical particle called the axion could solve one of physics' great mysteries: the excess of matter over antimatter, or why we're here at all.

NASA's Fermi Mission links nearby pulsar's gamma-ray 'halo' to antimatter puzzle
NASA's Fermi Gamma-ray Space Telescope has discovered a faint but sprawling glow of high-energy light around a nearby pulsar.

Could the mysteries of antimatter and dark matter be linked?
RIKEN researchers and collaborators have performed the first laboratory experiments to determine whether a slightly different way in which matter and antimatter interact with dark matter might be a key to solving both mysteries.

Read More: Antimatter News and Antimatter Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.