Nav: Home

UIC researchers create heart cells to study AFib

May 03, 2018

University of Illinois at Chicago researchers have discovered a way turn pluripotent stem cells into atrial cells, which make up the upper chambers, or atria, of the heart. The discovery will enable them to better study atrial fibrillation, the most common heart rhythm disorder also known as AFib, which originates in the heart's atria.

As reported in the journal Stem Cell Reports, the researchers obtained blood cells from healthy volunteers, activated genes to make the cells pluripotent -- a type of stem cell that can become any cell type in the body -- and treated the cells with vitamin A.

These cells responded to electrical stimuli like atrial cells. The researchers say this is notable because stem cells typically default to ventricular cells, which make up the lower chambers, or ventricles, of the heart when they become heart cells.

"There is a fundamental gap in our understanding of AFib, in part, because the condition is challenging to study at a cellular level," said corresponding author Dr. Dawood Darbar, professor of medicine and cardiology in the UIC College of Medicine. "While science has provided much-needed insights into the causes of inherited arrhythmia syndromes that originate in the ventricles, thanks to the development of cellular models that act like ventricular cells, we have, until now, lacked fully-characterized cellular models of atrial-like stem cells."

"There are a select number of cell types that conduct electricity -- heart and brain cells are examples -- but even among heart cells how they conduct electricity varies," Darbar said. "This is the first time a study has shown that treating stem cells with vitamin A generates cells that are electrically like atrial cells."

The researchers hope that this fully-characterized atrial-like stem cell model will not only improve our understanding of the causes for AFib and discover new treatments, but will also enable us to test whether a patient, based on their genetic makeup, is likely to respond to a particular treatment.

"We believe this model will enable more in-depth research on the elusive causes of AFib and will facilitate a more 'personalized' approach to treating AFib in the future," Darbar said.
-end-
Co-authors on the study, which was funded by the National Institutes of Health (R01HL092217, HL138737, R01HL128170 and R24HL117756), are Mariana Argenziano, Erin Lambers, Liang Hong, Arvind Sridhar, Meihong Zhang, Brandon Chalazan, Ambili Menon, Eleonora Savio-Galimberti and Jalees Rehman of UIC and Joseph Wu of Stanford University.

University of Illinois at Chicago

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Stem Cell Therapy: A Rising Tide: How Stem Cells Are Disrupting Medicine and Transforming Lives
by Neil H Riordan (Author)

Stem Cells: An Insider's Guide
by Paul Knoepfler (Author)

The Science of Stem Cells
by Jonathan M. W. Slack (Author)

Stem Cells: A Short Course
by Rob Burgess (Author)

Stem Cell Revolution: Discover 26 Disruptive Technological Advances to Stem Cell Activation
by Joseph Christiano (Author)

Stem Cells: Promise And Reality
by Lygia V Pereira (Author)

Essentials of Stem Cell Biology
by Robert Lanza (Editor), Anthony Atala (Editor)

The Stem Cell Revolution
by Mark Berman MD (Author), Elliot Lander MD (Contributor)

Stem Cells For Dummies
by Lawrence S.B. Goldstein (Author), Meg Schneider (Author)

Stem Cells Are Everywhere
by Irv Weissman MD (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Story Behind The Numbers
Is life today better than ever before? Does the data bear that out? This hour, TED speakers explore the stories we tell with numbers — and whether those stories portray the full picture. Guests include psychologist Steven Pinker, economists Tyler Cowen and Michael Green, journalist Hanna Rosin, and environmental activist Paul Gilding.
Now Playing: Science for the People

#487 Knitting in PEARL
This week we're discussing math and things made from yarn. We welcome mathematician Daina Taimina to the show to discuss her book "Crocheting Adventures with Hyperbolic Planes: Tactile Mathematics, Art and Craft for all to Explore", and how making geometric models that people can play with helps teach math. And we speak with research scientist Janelle Shane about her hobby of training neural networks to do things like name colours, come up with Halloween costume ideas, and generate knitting patterns: often with hilarious results. Related links: Crocheting the Hyperbolic Plane by Daina Taimina and David Henderson Daina's Hyperbolic Crochet blog...