Making the invisible visible: New method opens unexplored realms for liquid biopsies

May 03, 2019

ANN ARBOR, Michigan -- Advancing technology is allowing scientists increasingly to search for tiny signs of cancer and other health issues in samples of patients' blood and urine. These "liquid biopsies" are less invasive than a traditional biopsy, and can provide information about what's happening throughout the body instead of just at a single site.

Now researchers at the University of Michigan Rogel Cancer Center have developed a new method for lifting the genetic fingerprints of tiny fragments of RNA found in blood plasma that are invisible to traditional methods of RNA sequencing.

These messenger RNAs and long non-coding RNAs can provide important clues about the activity of genes throughout the body -- including genes that are active in particular organs or that are associated with certain diseases, like cancer -- and thus could serve as potential biomarkers for a host of conditions.

"We believe that there are a wide variety of potential clinical applications," says Muneesh Tewari, M.D., Ph.D., professor of internal medicine at the U-M Medical School, and of biomedical engineering, a joint department of the Medical School and College of Engineering. "For example, in cancer, we're excited about applying this approach to try to detect the earliest signs of autoimmune side-effects from immunotherapies. There's also the potential for early detection of cancer because there are long non-coding RNAs that are fairly specific to certain cancer types."

Tewari is the senior author of a study published May 3 in the EMBO Journal that describes the new method and demonstrates its effectiveness in a study of bone marrow transplant patients.

From idea to proof-of-concept

The research -- which was led by postdoctoral fellows Maria Giraldez, M.D., Ph.D., now a faculty member at the Institute of Biomedicine of Seville in Spain, and Ryan Spengler, Ph.D. -- is the culmination of more than a decade of work.

In 2008, Tewari, who was then at the Fred Hutchinson Cancer Research Center in Seattle, Washington, and his colleagues published a paper describing a breakthrough for detecting microRNAs from tumors in blood plasma.

The method's shortcoming, however, was that it wasn't able to detect more prevalent and organ-specific types of RNA, which are often found in fragmentary form.

"The real innovation in this new study was recognizing that these other types of RNA were being missed because they had simple but critical differences that prevented them from showing up in the blood plasma sequencing results," Tewari explains. "We used an enzyme to tailor the ends of these fragments so they would show up in the sequencing. And that relatively simple step revealed that, yes, there are thousands of these additional gene transcripts in the bloodstream."

The second critical piece of the puzzle was developing a method for reliably sorting through the flood of sequencing data to filter out false positives and ensure an accurate result -- what the scientists call a "high-stringency bioinformatic analysis pipeline."

"We had to figure out how to separate signal from noise -- how to remove bits of irrelevant genetic material from bacterial and viral RNAs as well as from our own genome, which add noise to the data," says Spengler, who led the data analysis. "When the sequences are really short, they can match to multiple places in the human genome by chance and it's difficult to say which gene they're really coming from."

The new method, called phospho-RNA-seq because of the way the fragment ends are tailored, was first validated in experiments using a curated pool of RNA -- so the scientists knew ahead of time what accurate results should look like. Then, to demonstrate that it could work in a real-world setting, the method was tested on plasma samples collected weekly from two patients who underwent bone marrow transplants at U-M.

"We could track the markers of the reconstitution of their bone marrow after the transplant, as well as changes in the blood plasma RNA that indicated injury to the liver -- which lined up with what we knew was happening from their medical records," Tewari says.

A new tool for clinicians and researchers

Phospho-RNA-seq has potential applications for discovery sciences as well as more direct applications, Tewari notes.

"On the basic science side, now that we know there are thousands of these RNAs floating around in the bloodstream, it raises questions about why they're there and what function they may have," he says. "But the more immediate application is that we are now better able to read the human transcriptome -- the activity of genes throughout the body -- in plasma samples, which can give us new information about states of health and disease.

"I look at this as proof-of-concept research, but I expect that as we continue to refine the technology and make it even more accessible for other researchers, it's likely to be applied to many different disease areas and body systems," Tewari adds.

Tewari also stresses the collaborative and cross-disciplinary nature of the work, which required laboratory, computational and clinical expertise.

"This is exactly why I came to Michigan," he says, "to be able to do bench research that reaches into the clinic through exciting collaborations across medical specialties and scientific disciplines."
Additional authors

Alton Etheridge and David J. Galas, of the Pacific Northwest Research Institute. Annika J. Goicochea, Missy Tuck and Sung Won Choi, of U-M.


The research was supported by the National Institutes of Health (HL126499, HL126496); the A. Alfred Taubman Medical Research Institute (Grand Challenge Award); National Cancer Institute (P30CA046592); University of Michigan Precision Health Center; the Spanish Institute of Health Carlos III; and the Pacific Northwest Research Institute.




"Phospho-RNA-seq: a modified small RNA-seq method that reveals circulating mRNA and lncRNA fragments as potential biomarkers in human plasma," the EMBO Journal, doi: 10.15252/embj.2019101695


University of Michigan Rogel Cancer Center,

Michigan Health Lab,

Michigan Medicine Cancer AnswerLine, 800-865-1125

Michigan Medicine - University of Michigan

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to