Novel thermoelectric nanoantenna design for use in solar energy harvesting

May 03, 2019

BELLINGHAM, Washington, USA and CARDIFF, UK - In an article published in the SPIE Journal of Nanophotonics (JNP), researchers from a collaboration of three labs in Mexico demonstrate an innovative nanodevice for harvesting solar energy. The paper, "Thermoelectric efficiency optimization of nanoantennas for solar energy harvesting," reports that evolutive dipole nanoantennas (EDNs) generate a thermoelectric voltage three times larger than the classic dipole nanoantenna (CDN).

Capturing visible and infrared radiation using nanodevices is an essential aspect of collecting solar energy: solar cells and solar panels are common devices that utilize nanoantennas, which link electromagnetic radiation to specific optical fields. The EDN antenna can be useful in many areas where high thermoelectric efficiency is needed from energy harvesting to applications across the aerospace industry.

"The paper reports on a novel design and demonstration of a nanoantenna for efficient thermoelectric energy harvesting," says Professor Ibrahim Abdulhalim, JNP Associate Editor, SPIE Fellow and a professor in the Electrooptics and Photonics Engineering Department at Ben-Gurion University of the Negev. "They demonstrated thermoelectric voltage three times larger than a classical antenna. This type of antenna can be useful in many fields from harvesting of energy from waste heat, in sensing and solar thermal energy harvesting."

The nanoantennas are bimetallic, using nickel and platinum, and were fabricated using e-beam lithography. The nanoantenna design was optimized using simulations to determine the distance between the elements. In comparing their thermoelectric voltage to the classic dipole nanoantenna, the EDNs were 1.3 times more efficient. The characterization was done using a solar simulator analyzing the I-V curves. The results indicate that EDN nanoantenna arrays would be good candidates for the harvesting of waste heat energy.
-end-
The article authors are Javier Mendez-Lozoya of Terahertz Science and Technology National Lab, Universidad Autonoma de San Luis Potosi, Mexico; Ramon Diaz de Leon-Zapata, of Tecnologico Nacional de Mexico, San Luis Potosi, Mexico; Edgar Guevara of Terahertz Science and Technology National Lab and Catedras CONACYT, Universidad Autonoma de San Luis Potosi, Mexico; Gabriel Gonzalez of Terahertz National Lab and Catedras CONACYT, Universidad Autonoma de San Luis Potosi, Mexico; and Francisco J. Gonzalez, of Terahertz Science and Technology National Lab, Universidad Autonoma de San Luis Potosi, Mexico.

Ali Adibi, an SPIE Fellow and Joseph M. Pettit Professor of Electronics at the Georgia Institute of Technology, is the editor-in-chief of the Journal of Nanophotonics. The journal is published in print and digitally by SPIE in the SPIE Digital Library, which contains more than 500,000 publications from SPIE journals, proceedings, and books, with approximately 18,000 new research papers added each year.

About SPIE

SPIE is the international society for optics and photonics, an educational not-for-profit organization founded in 1955 to advance light-based science, engineering, and technology. The Society serves 257,000 constituents from 173 countries, offering conferences and their published proceedings, continuing education, books, journals, and the SPIE Digital Library. In 2018, SPIE provided more than $4 million in community support including scholarships and awards, outreach and advocacy programs, travel grants, public policy, and educational resources. http://www.spie.org.

Contact:

Daneet Steffens
Public Relations Manager
daneets@spie.org
+1 360 685 5478
@SPIEtweets

SPIE--International Society for Optics and Photonics

Related Nanoantennas Articles from Brightsurf:

Turning a hot spot into a cold spot: Fano-shaped local-field responses probed by a quantum dot
Optical nanoantennas can convert propagating light to local fields. Scientists in China demonstrate that in the nanogap of a nanoantenna, a local-field hot spot can be turned into a cold spot, and the spectral dispersion of the local-field response can exhibit dynamically tunable Fano lineshapes with nearly vanishing Fano dips.

Extraordinary modulation of light polarization with dark plasmons in magnetoplasmonic nanocavities
Enhancing magneto-optical effects is crucial for the size reduction of key photonic devices based on non-reciprocal propagation of light and to enable active nanophotonics.

'Magnonic nanoantennas': optically-inspired computing with spin waves one step closer
A new methodology for generating and manipulating spin waves in nanostructured magnetic materials opens the way to developing nano-processors for extraordinarily quick and energy efficient analog processing of information.

Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays
Near-to-mid infrared colloidal quantum dots offer a promising platform towards the realization of many useful devices including emitters, detectors, security and sensor systems.

Space-time metasurface makes light reflect only in one direction
Breaking reciprocity is important in optical systems that require asymmetric flow of light, such as full-duplex communication systems and lasers.

Creating switchable plasmons in plastics
Researchers in the Organic Photonics and Nano-optics goup at the Laboratory of Organic Electronics have developed optical nanoantennas made from a conducting polymer.

FEFU scientists developed high-precision sensor based on laser-textured gold film
Scientists of Far Eastern Federal University (FEFU) with colleagues from Russia, Japan, and Australia have developed a multi-purpose sensor based on a specially designed gold film which surface contains millions of parabolic nanoantennas produced by femtosecond laser printing.

Illinois researchers develop new framework for nanoantenna light absorption
Harnessing light's energy into nanoscale volumes requires novel engineering approaches to overcome a fundamental barrier known as the 'diffraction limit.' However, University of Illinois researchers have breached this barrier by developing nanoantennas that pack the energy captured from light sources.

Tiny light box opens new doors into the nanoworld
Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel.

Novel thermoelectric nanoantenna design for use in solar energy harvesting
In an article published in the SPIE Journal of Nanophotonics (JNP), researchers from a collaboration of three labs in Mexico demonstrate an innovative nanodevice for harvesting solar energy.

Read More: Nanoantennas News and Nanoantennas Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.