Nav: Home

Needleless vaccine will protect children from dangerous viruses

May 03, 2019

Millions of people are infected with hepatitis B every year. Hundreds of thousands die. And small children are particularly at risk. Due to high cost and the stable environmental conditions required for vaccine storage, many people in developing countries are not vaccinated against this dangerous virus. As such, researchers have been working to produce a drop or powdered form of oral vaccine. Oral vaccinations are cheaper and more easily administered than injections. However, developing a sufficiently effective oral hepatitis B vaccine has so far eluded researchers.

A joint collaboration from physicists at the Niels Bohr Institute, a team of researchers from University of São Paulo together with the Butantan Institute has introduced a technique to the pharmaceutical world that just might do the trick and lead to an optimal oral Hepatitis B vaccine.

"We have used a technology commonly used in solid state physics to explore how the vaccine behaves within a particular type of encapsulation. This has yielded crucial information that would not otherwise have been achievable. When we scientists venture beyond our comfort zone and deploy each other's knowledge across disciplines, entirely new possibilities can emerge," says Heloisa Bordallo, an associate professor at the Niels Bohr Institute, and one of the two main authors of the research article just published in Scientific Reports.

Three dimensional insight

A major challenge of making an oral vaccine is to encapsulate it in a material that can endure the harsh conditions of our digestive system, to protect the vaccine from being destroyed before it reaches its intended destination in the body. The Danish research team's collaborative partners in Brazil have long known that the silica-material SBA-15 is well-suited to encapsulate a hepatitis B vaccine. However, they did not know exactly how the material protected the vaccine. Nor were they certain about why their vaccine was not always completely effective.

This is where the team of Danish physicists came into the picture. Using a special technique that combines x-ray and neutron imaging, researchers at the Niels Bohr Institute were able to produce 3D images of the inside of the SBA-15 silica. It marked a crucial step in the use of this technique to develop pharmaceuticals. The imagery allows researchers to see how the vaccine behaves inside the silica, right down to the particle scale. Among other things, they were able to see that the vaccine had a tendency to clump within the silica, making it less effective.

"Now we know what makes the vaccine less effective, and how to optimize it. We know exactly how much vaccine should be put in the silica capsule for it to work best in the body and the clinical trials can be better interpreted," explains Heloisa Bordallo.

No more swelling and inflammation

The vaccine is particularly promising for developing nations, explains the other main author, Martin K. Rasmussen, a former student at the Niels Bohr Institute and current doctoral student at DTU:

"Getting rid of needles being poked into the arms of little children is an advantage in and of itself. It also eliminates any need to sterilize needles and possible side effects such as swelling and infection. And, unlike the vaccine in use today, this type of vaccine needn't be refrigerated. As such, costs will be reduced and the vaccine's administration will be eased."

The researchers hope that the 3D technology will also be used to develop oral vaccines against several other types of disease. The goal of the Danish researchers' Brazilian collaborative partners is to produce a 6-in-1 oral vaccine against diphtheria, tetanus, whooping cough, polio, Hib and hepatitis B. The vaccine against diphtheria and tetanus is already being developed.
-end-
FACTS:
  • The study was conducted in collaboration with: Institute of Physics at the Universidade de São Paulo, Brazil; Virology Laboratory, Butantan Institute, Brazil; Immunochemistry Laboratory, Butantan Institute, Brazil; the Technical University of Denmark; Helmholtz Center Berlin for Materials and Energy, Germany; Paul Scherrer Institute, Switzerland; ESRF - The European Synchrotron, ID16B, France and the European Spallation Source (ESS), Sweden.

  • The research is funded by Danscatt; São Paulo Research Foundation, FAPESP; European Synchrotron Radiation Facility (ESRF), France; Federal Ministry of Education and Research, Germany.

  • The article is published in the scientific journal Scientific Reports.

  • According to the World Health Organization, nearly 257 million people are infected with hepatitis B. 887,000 people died from hepatitis B in 2015.


University of Copenhagen

Related Hepatitis Articles:

Hepatitis B: New therapeutic approach may help to cure chronic hepatitis B infection
Researchers at Helmholtz Zentrum München, Technical University of Munich (TUM) and the German Center for Infection Research (DZIF) have developed a novel therapeutic approach to cure chronic hepatitis B.
Anti-hepatitis medicine surprises
A new effective treatment of hepatitis C not only combats the virus, but is also effective against potentially fatal complications such as reduced liver functioning and cirrhosis.
Nanotechnology delivers hepatitis B vaccine
X-ray imaging shows that nanostructured silica acts as a protective vehicle to deliver intact antigen to the intestine so that it can trigger an immune response.
Checkmate for hepatitis B viruses in the liver
Researchers at Helmholtz Zentrum München and the Technical University of Munich, working in collaboration with researchers at the University Medical Center Hamburg-Eppendorf and the University Hospital Heidelberg, have for the first time succeeded in conquering a chronic infection with the hepatitis B virus in a mouse model.
How common is Hepatitis C infection in each US state?
Hepatitis C virus infection is a major cause of illness and death in the United States and injection drug use is likely fueling many new cases.
New strains of hepatitis C found in Africa
The largest population study of hepatitis C in Africa has found three new strains of the virus circulating in the general population in sub-Saharan Africa.
High stability of the hepatitis B virus
At room temperature, hepatitis B viruses (HBV) remain contagious for several weeks and they are even able to withstand temperatures of four degrees centigrade over the span of nine months.
Findings could lead to treatment of hepatitis B
Researchers have gained new insights into the virus that causes hepatitis B -- a life-threatening and incurable infection that afflicts more than 250 million people worldwide.
How to cure more hepatitis C patients
The cost of cures for hepatitis C have been prohibitive, but experts who served on an NAS panel have a solution that will save more patients and incentivize drug innovation.
Hepatitis C: A novel point-of-care assay
One of the major challenges identified by the WHO in efforts to eradicate the hepatitis C virus is the diagnosis of chronic cases that are generally asymptomatic.
More Hepatitis News and Hepatitis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.