Nav: Home

New holographic technique opens the way for quantum computation

May 03, 2019

Photography measures how much light of different color hits the photographic film. However, light is also a wave, and is therefore characterized by the phase. Phase specifies the position of a point within the wave cycle and correlates to depth of information, meaning that recording the phase of light scattered by an object can retrieve its full 3D shape, which cannot be obtained with a simple photograph. This is the basis of optical holography, popularized by fancy holograms in sci-fi movies like Star Wars.

But the problem is that the spatial resolution of the photo/hologram is limited by the wavelength of light, around or just-below 1 μm (0.001 mm). That's fine for macroscopic objects, but it starts to fail when entering the realm of nanotechnology.

Now researchers from Fabrizio Carbone's lab at EPFL have developed a method to see how light behaves on tiniest scale, well beyond wavelength limitations. The researchers used the most unusual photographic media: freely propagating electrons. Used in their ultrafast electron microscope, the method can encode quantum information in a holographic light pattern trapped in a nanostructure, and is based on an exotic aspect of electron and light interaction.

The scientists used the quantum nature of the electron-light interaction to separate the electron-reference and electron-imaging beams in energy instead of space. This makes it now possible to use light pulses to encrypt information on the electron wave function, which can be mapped with ultra-fast transmission electron microscopy.

The new method can provide us with two important benefits: First, information on light itself, making it a powerful tool for imaging electromagnetic fields with attosecond and nanometer precision in time and space. Second, the method can be used in quantum computing applications to manipulate the quantum properties of free electrons.

"Conventional holography can extract 3D information by measuring the difference in distance that light travels from different parts of the object," says Carbone. "But this needs an additional reference beam from a different direction to measure the interference between the two. The concept is the same with electrons, but we can now get higher spatial resolution due to their much shorter wavelength. For example, we were able to record holographic movies of quickly moving objects by using ultrashort electron pulses to form the holograms."

Beyond quantum computations, the technique has the highest spatial resolution compared to alternatives, and could shift the way we think about light in everyday life. "So far, science and technology have been limited to freely propagating photons, used in macroscopic optical devices," says Carbone. "Our new technique allows us to see what happens with light at the nanoscale, the first step for miniaturization and integration of light devices onto integrated circuits."
Other contributors

University of Glasgow
Barcelona Institute of Science and Technology
ICREA-Institució Catalana de Recerca i Estudis Avançats
ETH Zürich


I. Madan, G. M. Vanacore, E. Pomarico, G. Berruto, R. J. Lamb, D. McGrouther, T. T. A. Lummen, T. Latychevskaia, F. J. García de Abajo, F. Carbone. Holographic imaging of electromagnetic fields via electron-light quantum interference. Science Advances 03 May 2019, 5:eaav835.

Ecole Polytechnique Fédérale de Lausanne

Related Electron Articles:

Attosecond control of an atomic electron cloud
Researchers at SAGA Light Source, the University of Toyama, Hiroshima University and the Institute for Molecular Science have demonstrated a method to control the shape and orientation of an electron cloud in an atom by tuning the attosecond spacing in a double pulse of synchrotron radiation.
Electron correlations in carbon nanostructures
Graphene nanoribbons are only a few carbon atoms wide and have different electrical properties depending on their shape and width.
The fast dance of electron spins
Metal complexes show a fascinating behavior in their interactions with light, which for example is utilized in organic light emitting diodes, solar cells, quantum computers, or even in cancer therapy.
Novel mechanism of electron scattering in graphene-like 2D materials
Suggesting an unconventional way to manipulate the properties of 2D materials in the presence of a Bose-Einstein condensate, and an alternative strategy to design high-temperature superconductors.
Switching electron properties on and off individually
Electrons have different properties - and they all can be used to create order in solid objects.
Mechanical vibration generated by electron spins
Micro mechanical elements are indispensable components of modern electrical devices but the actuation of them requires electrical current.
Electron beam strengthens recyclable nanocomposite
Carbon fiber-enhanced thermoplastic polymer mechanical properties improve when irradiated with an electron beam, report researchers at Kanazawa University in the journal Composites Part A.
The geometry of an electron determined for the first time
Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom.
Manipulating atoms one at a time with an electron beam
Researchers at MIT and elsewhere have found a way to manipulate the positions of individual atoms on a graphene sheet, which could be a first step to new quantum computing and sensing devices.
Electron accelerators reveal the radical secrets of antioxidants
An Osaka University professor has demonstrated for the first time the value of linear particle accelerators for the generation of free radicals inside biological samples.
More Electron News and Electron Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at