Nav: Home

Industry-ready process makes plastics chemical from plant sugars

May 03, 2019

MADISON, Wis. -- Developing renewable, plant-based alternatives for petroleum-derived chemicals is a major piece of the effort to transition away from a fossil-fuel based economy toward a more sustainable and environmentally friendly bio-based economy. But integration of novel and unproven technology into existing industrial systems carries an element of risk that has made commercialization of such advances a significant challenge.

In new research, published recently in the journal Energy and Environmental Science, a team from the Great Lakes Bioenergy Research Center and the University of Wisconsin-Madison describe an efficient and economically feasible process for producing HMF -- 5-hydroxymethylfurfural, a versatile plant-derived chemical considered crucial for building a renewable economy.

What's more, the process is simple and compatible with the existing infrastructure in the high fructose corn syrup industry, the researchers show.

"We integrated into a current process to reduce the initial risk quite a bit and decrease the initial capital required to put things on the ground to prove the technology," says Ali Hussain Motagamwala, who led the project while a UW-Madison graduate student in chemical and biological engineering.

HMF can be used to make a wide range of chemicals, plastics and fuels. It is an appealing candidate for commercialization in part because there is already an established market for many of the products made with HMF. One is a fully plant-derived version of polyethylene terephthalate (PET), the common plastic used to make beverage bottles and other food packaging. For example, Coca-Cola, Danone, and BASF have already invested in the production of furandicarboxylic acid, an HMF-derived chemical used to make 100 percent bio-based plastic bottles.

To date, however, HMF's use has been limited by its high production cost. Bio-based plastics are currently more expensive than their petroleum counterparts, largely due to the scale of the existing manufacturing processes.

"There is a demand for sustainable alternatives. The question is, how cost-competitive can we be with petroleum-based products?" says Motagamwala.

UW-Madison chemical and biological engineering Professor James A. Dumesic, senior author of the paper, has been working for more than two decades on technologies to sustainably and economically produce HMF from biomass-derived sugars.

"We have known for many years that HMF is a platform molecule with tremendous potential, but it has been an ongoing challenge to produce HMF in a cost-effective manner from sustainable carbohydrate resources," Dumesic says. "Our early work focused on the use of special solvent systems to produce HMF from fructose with high yields."

The problem has always been the solvent in which HMF has been produced.

"The solvents that are generally used are expensive themselves, and separation of the solvent and product makes the process even more expensive," Motagamwala says. "Now we have shown that we can make HMF in really high yield -- close to 95% -- with an inexpensive solvent system that can be removed very easily."

The GLBRC team's process dehydrates fructose to HMF using a solvent system composed of just acetone and water, with a stable solid acid catalyst. In addition to being cheap and readily accessible, the solvents are environmentally benign and easy to separate from the resulting HMF.

"One of the best things about the new process is that all the unit operations used are simple and are currently employed in the industry," Motagamwala says. That means a lower capital investment and less risk than is generally associated with unproven technologies.

The researchers conducted a techno-economic assessment to evaluate the feasibility of deploying the new process. It shows that a minimum selling price for HMF of $1,710 per ton will achieve a 25% return on investment -- a comfortable percentage intended to build in some reassurance of profitability.

The largest factor in determining that price is the cost of the feedstock -- in this case, fructose. That means a company within the corn industry would already control the biggest cost in the system. It also means that when high fructose corn syrup supply is higher than demand, the industry could shunt excess fructose into HMF as a separate, high-value product stream.

The researchers also demonstrated how the process can be expanded to use glucose as a feedstock. Because glucose can be readily produced from biomass, it is cheaper and more abundant than fructose. However, HMF production from glucose requires an extra processing step and additional infrastructure.

Proving the technology using fructose is the first step, according to Motagamwala.

"The long-term implementation of the process is to get plants starting from glucose, which will drive the cost even lower," he says.
-end-
The research was funded through a grant from the Department of Energy (DE-SC0018409).

--Jill Sakai, jasakai@wisc.edu

University of Wisconsin-Madison

Related Glucose Articles:

What drives inflammation in type 2 diabetes? Not glucose, says new research
Research led by Barbara Nikolajczyk, Ph.D., disproved the conventional wisdom that glucose was the primary driver of chronic inflammation in type 2 diabetes.
ALS patients may benefit from more glucose
A new study led by scientists at the UA has uncovered a potential new way to treat patients with ALS, a debilitating neurodegenerative disease.
Artificial muscles powered by glucose
Artificial muscles made from polymers can now be powered by energy from glucose and oxygen, just like biological muscles.
Efficiently producing fatty acids and biofuels from glucose
Researchers have presented a new strategy for efficiently producing fatty acids and biofuels that can transform glucose and oleaginous microorganisms into microbial diesel fuel, with one-step direct fermentative production.
Protein released from fat after exercise improves glucose
Exercise training causes dramatic changes to fat. Additionally, this 'trained' fat releases beneficial factors into the bloodstream.
WSU researchers create 3D-printed glucose biosensors
A 3D-printed glucose biosensor for use in wearable monitors has been created by Washington State University researchers.
Gut protein mutations shield against spikes in glucose
Why is it that, despite consuming the same number of calories, sodium and sugar, some people face little risk of diabetes or obesity while others are at higher risk?
Glucose binding molecule could transform the treatment of diabetes
Scientists from the University of Bristol have designed a new synthetic glucose binding molecule platform that brings us one step closer to the development of the world's first glucose-responsive insulin which, say researchers, will transform the treatment of diabetes.
Nutrients may reduce blood glucose levels
One amino acid, alanine, may produce a short-term lowering of glucose levels by altering energy metabolism in the cell.
Cancer hijacks the microbiome to glut itself on glucose
A University of Colorado Cancer Center study published today in the journal Cancer Cell shows that leukemia actively undercuts the ability of normal cells to consume glucose, thus leaving more glucose available to feed its own growth.
More Glucose News and Glucose Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.