Nav: Home

Missing molecule hobbles cell movement

May 03, 2019

Cells missing a certain protein on their surface can't move normally, UConn researchers report in Science Signaling. The research could give insight into how cells move and repair wounds in normal tissue, as well as how cancer spreads through the body.

Cells are the body's workers, and they often need to move around to do their jobs. Frequently, a cell will move through a tissue - say, the wall of a blood vessel - the way a rock climber scales a cliff, using a protein called integrin to grab onto a spot and pull itself in that direction. When the cell moves forward, it releases the integrin grip at its rear and brings it inside itself for recycling to the front, where it is then reused to make a new grip and move forward.

This type of movement is important when cancers metastasize, breaking away from the primary tumor and spreading through the rest of the body. Cancer cells need to crawl through a tissue using integrin until they reach a blood vessel they can use to travel long distances. Disabling the integrin mode of transport might be one method of preventing cancer from spreading.

UConn Health vascular biologists Mallika Ghosh and Linda Shapiro wondered how a common protein found in a cell's skin, called the cell membrane, affected this type of movement. The protein, called CD13, spikes through the cell's membrane, with one end interacting with the inside of the cell and the other with the outside world. CD13 has many different functions, including binding a cell in place and helping cells communicate with each other.

To test CD13's role in cellular movement, Ghosh, Shapiro, and their colleagues first looked at mouse fibroblasts, a type of cell that makes the scaffolding that holds tissues and organs together. They added the fibroblasts to petri dishes filled with fibronectin, a material found outside of the cell that integrin grasps. Integrin, remember, is the protein that cells use to grab on and drag themselves through a tissue. Some of the fibroblasts were normal; others had had the gene for CD13 knocked out.

The researchers found that normal fibroblasts could move through the petri dish using their integrin method with no trouble, but CD13 knock-out fibroblasts couldn't move at all.

Then they stained the cell nucleus blue and the integrin on the cell surface green, and watched to see what happened. The normal fibroblasts pulled all their integrin inside, and after about two hours for recycling, it reappeared on the surface. The CD13 knock-out fibroblasts also pulled all their integrin inside after two hours, but the integrin never reappeared.

They tried the same experiment with human cervical cancer cells and got the same result. What appeared to be happening is that CD13 acts as an organizer, gathering the freshly recycled integrin and other necessary proteins at the cell membrane so it's ready to be pushed out when the cell needs to move.

"Without CD13, the integrins go inside and don't come back out," Shapiro says. The details of how CD13 gathers the integrin in the right place involves assembly of the cell's recycling machinery by the part of CD13 that extends inside of the cell in response to signals detected by the segment of CD13 that protrudes outside.

"And all these steps are critical for the cells to process information from the outside environment and move forward," Ghosh says.

The researchers are now looking at different versions of integrin proteins and various binding materials such as collagen and laminin, to see if CD13 plays the same role in cell movement in tissues that use those proteins for structure.
-end-


University of Connecticut

Related Cancer Cells Articles:

Scientists have identified the presence of cancer-suppressing cells in pancreatic cancer
Researchers have identified cells containing a protein called Meflin that has a role in restraining the progression of pancreatic cancer.
Changes in the metabolism of normal cells promotes the metastasis of ovarian cancer cells
A systematic examination of the tumor and the tissue surrounding it -- particularly normal cells in that tissue, called fibroblasts -- has revealed a new treatment target that could potentially prevent the rapid dissemination and poor prognosis associated with high-grade serous carcinoma (HGSC), a tumor type that primarily originates in the fallopian tubes or ovaries and spreads throughout the abdominal cavity.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.
Conversion of breast cancer cells into fat cells impedes the formation of metastases
An innovative combination therapy can force malignant breast cancer cells to turn into fat cells.
Breast cancer cells in mice tricked into turning into fat cells
As cancer cells respond to cues in their microenvironment, they can enter a highly plastic state in which they are susceptible to transdifferentiation into a different type of cell.
Brain cancer: Typical mutation in cancer cells stifles immune response
The exchange of a single amino acid building block in a metabolic enzyme can lead to cancer.
Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.
Dying cancer cells make remaining glioblastoma cells more aggressive and therapy-resistant
A surprising form of cell-to-cell communication in glioblastoma promotes global changes in recipient cells, including aggressiveness, motility, and resistance to radiation or chemotherapy.
An index measures similarity between cancer cells and pluripotent stem cells
The new methodology measures tumor aggressiveness and the risk of relapse, helping doctors plan treatment, according to Brazilian scientists authors of a paper published in a special issue of the journal Cell.
More Cancer Cells News and Cancer Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab