Cancer cells have a problem with junk RNA that makes them vulnerable

May 03, 2019

In an article just published by Trends in Cancer online, Dr. Alan Herbert, founder at InsideOutBio, highlights how the way cancer cells solve the problem of junk RNA makes them vulnerable to a new type of cancer therapy.

DNA mutations are not enough for cancer cells to keep growing. They need to fix a number of other problems as well. One challenge is dealing with the junk RNA that accumulates when cancer cells go wild and make RNA indiscriminately. In normal cells or those infected with virus, such high levels of junk RNA cause cell-suicide or elimination by the immune system. Tumors survive their junk RNA problem by preventing these responses. They exploit an enzyme known as ADAR that helps eliminate the junk RNA threat. Overall, about 40% of tumors are dependent in vitro on ADAR for their survival (for some tumor types it is as high as 80%). When ADAR is inhibited, those tumors die just as a normal cell would. Targeting ADAR is a novel approach for treating cancer. The discoveries represent a major advance in our understanding of tumor biology and reveal new ways to defeat cancer.

Checkpoint inhibitors (CPIs) are the mainstay of modern cancer immunotherapy. They work by amplifying immune responses against tumors. The 2018 Nobel Prize award recognized their discovery. ADAR causes CPIs to fail by silencing immune responses. Inhibiting ADAR improves responses to CPIs in mouse cancer models and promises another huge advance in improving cancer survival.

ADAR is unusual because it binds to double-stranded Z-DNA and to double-stranded Z-RNA that twists to the left rather to the right (as it does in Watson-Crick DNA). Recognition of Z-DNA and Z-DNA targets ADAR enzyme to RNAs that it attacks. Mutations that prevent Z-DNA and Z-RNA recognition by ADAR produce immune activation. Drugs designed to inhibit ADAR function should act in the same way and stimulate immune responses against tumors. Targeting one particular variant of ADAR (the p150 isoform) will be highly selective for tumor cells. This approach will reduce unwanted treatment side effects by sparing normal cells.

Many tumors that are likely to respond to ADAR inhibition. They are identifiable with a junk RNA test, called the Alu Editing Index (AEI). The AEI can also tell whether a treatment is working. The test is suitable for use in a wide range of tumors, but is not currently available for use in the clinic. Its importance is only now coming into focus as a result of the recent findings described in the article. Currently, only a DNA test for mutations (the tumor mutational burden test) works across many different cancers.

The article draws attention to the many decades of work at laboratories and research centers around the world involving many talented scientists from a diverse set of disciplines that underlie these discoveries, some published just in the last 6 months. Dr. Herbert's work lead to the identification of the role Z-DNA and Z-RNA in ADAR function and in Mendelian diseases. "The important role of ADAR and junk RNA in cancer opens an entirely new playbook for the treatment of disease, one that is focused on RNA rather than DNA", comments Dr. Herbert. "The work illustrates how basic research reveals new insights and alters clinical perceptions in unexpected ways".
About Inside Out Bio

InsideOutBio is a start-up focused on developing a novel class of proprietary therapeutics to 'light' up tumors for the immune system to kill by reprogramming self/nonself pathways within cancer cells. The therapeutics will make existing immunotherapies work better and promote long-term immunity against tumor reoccurence. The development cycle for these new DNA-based therapeutics is rapid - 18 weeks from design to validation in a relevant preclinical model. Current lead indications are renal and ovarian cancer. Dr. Herbert leads discovery at InsideOutBio. These statements about InsideOutBio comply with Safe-Harbor laws. They are forward-looking and involve known and unknown risks and uncertainties. They are not guarantees of future performance and undue reliance should not be placed on them.


Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to