Nav: Home

Messenger cells bring good news for bone healing, USC stem cell study finds

May 03, 2019

How do bones heal, and how could they heal better? The answer to these questions may lie in a newly discovered population of "messenger" cells, according to a recent USC Stem Cell study published in the journal eLife.

"With nearly half a million patients in the U.S experiencing failed bone repair every year, stimulating these 'messengers' and other key cell types could accelerate repair and prevent non-unions," said corresponding author Francesca Mariani, an associate professor of stem cell biology and regenerative medicine, and integrative anatomical sciences at the Keck School of Medicine of USC.

In their study, first author Stephanie T. Kuwahara and her colleagues looked at the mammalian rib bone, which regenerates uncommonly well. In fact, orthopaedic surgeons have noted that missing sections of the rib as long as eight inches will readily grow back in patients.

By observing similar rib surgeries in mice, the scientists proposed a model for how mammals repair large bone injuries, and identified key cell types essential to the healing process.

One of these key cell types is a small population of "messenger" cells, which can be identified by the activity of a gene called Sox9. These messenger cells reside in the sheath of tissue, called the periosteum, which surrounds each rib. Upon injury, a protein called "Hedgehog" activates the messenger cells, which in turn tell neighboring cells to differentiate into a hybrid between cartilage and bone. These hybrid cells form the "repair callus" that converts into newly regenerating bone.

"Future investigations into how messenger cells promote callus formation may lead to better strategies of boosting bone repair in other parts of the body that do not heal as effectively as the ribs," said Mariani.

The scientists also noted that while hybrid bone-cartilage cells play a critical role in regenerating injured ribs, they are surprisingly absent while the ribs originally form during embryonic development. This calls into question an existing dogma in many biology textbooks: that regeneration is a recapitulation of development. Instead, regeneration and repair may be their own distinct processes, involving unique cell types and genetic programs.
-end-
Additional co-authors include Maxwell A. Serowoky, Venus Vakhshori, Nikita Tripuraneni, Neel V. Hegde, Jay R. Lieberman and Gage Crump.

Ninety percent of this research was supported by federal funding from the National Institutes of Health (grant numbers T32HD060549, R21DE023899, R35DE027550, R21AR064462, and R01AR069700). Ten percent was funded by non-federal sources including the James H. Zumberge Research and Innovation Fund, and a USC California Regenerative Medicine Initiative Award.

University of Southern California - Health Sciences

Related Regeneration Articles:

Sensing infection, suppressing regeneration
UIC researchers describe an enzyme that blocks the ability of blood vessel cells to self-heal.
Adult fly intestine could help understand intestinal regeneration
Intestinal epithelial cells (IECs) are exposed to diverse types of environmental stresses such as bacteria and toxins, but the mechanisms by which epithelial cells sense stress are not well understood.
Fish reveal limb-regeneration secrets
What can fish teach scientists about limb regeneration? Quite a bit, as it turns out.
The regeneration of a cell depends on where it is positioned
Researchers at the Nara Institute of Science and Technology (NAIST) report a new single-cell RNA sequencing technology, single cell-digital gene expression, which can measure the transcriptome while preserving the positional information of the cell in the tissue.
The genetics of regeneration
Led by Assistant Professor of Organismic and Evolutionary Biology Mansi Srivastava, a team of researchers is shedding new light on how animals perform whole-body regeneration, and uncovered a number of DNA switches that appear to control genes used in the process.
Blood holds key to liver regeneration
The liver is the only organ in the body that can regenerate.
Electrical signals kick off flatworm regeneration
In a study publishing March 5 in Biophysical Journal, scientists report that electrical activity is the first known step in the tissue-regeneration process of planarian flatworms, starting before the earliest known genetic machinery kicks in and setting off the downstream activities of gene transcription needed to construct new heads or tails.
Multichannel bioreactor for lung regeneration analysis
New strides are being made toward the ex vivo growth of human lungs.
Gene therapy promotes nerve regeneration
Researchers from the Netherlands Institute for Neuroscience and the Leiden University Medical Center have shown that treatment using gene therapy leads to a faster recovery after nerve damage.
A new strategy for brain regeneration after stroke
Dr. Kazunobu Sawamoto (Professor, Nagoya City University and NIPS) and Dr.
More Regeneration News and Regeneration Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.