Carnegie Mellon researchers say use of switchgrass could solve energy woes

May 04, 2006

PITTSBURGH-- Carnegie Mellon University researchers say the use of switchgrass could help break U.S. dependence on fossil fuels and curb costly transportation costs.

"Our report indicates the time is right for America to begin a transition to ethanol derived from switchgrass," said Scott Matthews, an assistant professor in the Civil and Environmental Engineering Department. A 25 percent hike in gas prices at the pump since December adds to the researchers' call for more ethanol derived from switchgrass, a perennial tall grass used as forage for livestock. Gasoline prices in the U.S. are approaching an average of $3 a gallon. The Carnegie Mellon findings were published in the May 1 issue of the American Chemical Society's Journal "Environmental Science and Technology."

Matthews, along with W. Michael Griffin, executive director of the Green Design Institute at Carnegie Mellon's Tepper School of Business, and William R. Morrow, a researcher in the university's Department of Civil and Environmental Engineering, said using switchgrass as a supplement to corn to make ethanol would help ensure the availability of large volumes of inexpensive ethanol to fuel distributors and consumers.

"We need to be thinking about how we can make and deliver ethanol once our corn and land resources are maxed out. Switchgrass can be that next step," Griffin said.

The Carnegie Mellon report also found that ethanol derived from the dry, brown switchgrass, a cellulosic ethanol, could be made in sufficient quantities to deliver 16 percent ethanol fuel to all consumers in the U.S. Researchers said this would likely lead to significant decreases and stability in the price of gasoline.

"It's a renewable resource," Griffin said. "Rather than taking a depletable resource from the ground, switchgrass can be grown again and again."

In a recent address, President George W. Bush made a plea for increased focus on renewable energy, mentioning switchgrass by name.

Scientists have long known how to use enzymes and microorganisms to mine the carbon from carbohydrates to make industrial products. But for decades the technology didn't go very far commercially because fossil fuel - hydrocarbon - was a far cheaper carbon source.

Now that oil prices have climbed roughly 35 percent over the past year, cellulosic fermentation technology is becoming economical.

The United Nations Food and Agricultural Organization said last week that biofuels may supply 25 percent of the world's energy needs in 15 to 20 years.

"This shift from using hydrocarbons to carbohydrates could revolutionize many industries, including the nation's huge agricultural sector," Griffin said.

While the Carnegie Mellon researchers think switchgrass can be the source of large volumes of inexpensive ethanol in the future, they are concerned about the potential costs and siting concerns of using pipelines, the most cost-effective way to deliver fuels.

The U.S. has 100,000 miles of pipelines dedicated to transporting petroleum. But Carnegie Mellon researchers say the pipelines can't be efficiently used because impurities from the petroleum would adversely mix with the ethanol. "In the long run, our goal would be to make petroleum pipelines obsolete; which raises questions about whether ethanol pipelines should ever be built," Matthews said.

To avoid potential issues with pipelines, the authors expect regional solutions to dominate, such as widespread adoption of 85 percent ethanol delivered by rail or truck in the Midwest. American automakers already sell flexible-fuel vehicles (that can run on ethanol or gasoline) that can be purchased in the U.S.

Much of the discussions today about alternatives to gasoline, such as hydrogen, have similar issues related to infrastructure. "Unfortunately, most of the research time and money is being spent on the fuels without adequate consideration to how we will get it to consumers cost-effectively," Griffin said.
-end-


Carnegie Mellon University

Related Ethanol Articles from Brightsurf:

Spraying ethanol to nanofiber masks makes them reusable
A joint research team from POSTECH and Japan's Shinshu University evaluates the filtration efficiency of nanofiber and melt-blown filters when cleaned with ethanol.

Anaerobically disinfect soil to increase phosphorus using diluted ethanol
Anaerobic disinfection of soil is an effective method to kill unwanted bacteria, parasites and weeds without using chemical pesticides.

Fractionation processes can improve profitability of ethanol production
The US is the world's largest producer of bioethanol as renewable liquid fuel, with more than 200 commercial plants processing over 16 billion gallons per year.

Ethanol fuels large-scale expansion of Brazil's farming land
A University of Queensland-led study has revealed that future demand for ethanol biofuel could potentially expand sugarcane farming land in Brazil by 5 million hectares by 2030.

Measuring ethanol's deadly twin
ETH Zurich researchers have developed an inexpensive, handheld measuring device that can distinguish between methanol and potable alcohol.

Modified enzyme can increase second-generation ethanol production
Using a protein produced by a fungus that lives in the Amazon, Brazilian researchers developed a molecule capable of increasing glucose release from biomass for fermentation.

Scientists develop a chemocatalytic approach for one-pot reaction of cellulosic ethanol
Scientists at the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences have developed a chemocatalytic approach to convert cellulose into ethanol in a one-pot process by using a multifunctional Mo/Pt/WOx catalyst.

New core-shell catalyst for ethanol fuel cells
Scientists at Brookhaven Lab and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources.

Yeast makes ethanol to prevent metabolic overload
Why do some yeast cells produce ethanol? Scientists have wondered about this apparent waste of resources for decades.

Corncob ethanol may help cut China's greenhouse gas emissions
A new Biofuels, Bioproducts and Biorefining study has found that using ethanol from corncobs for energy production may help reduce greenhouse gas emissions in China, if used instead of starch-based ethanol.

Read More: Ethanol News and Ethanol Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.