Crop models help increase yield per unit of water used

May 04, 2009

MADISON, WI, May 4, 2009 -- Crop water use efficiency (WUE, or yield per unit of water used), also known as crop water productivity, can be improved through irrigation management and methods, including deficit irrigation (irrigating less than is required for maximum yields) and supplemental irrigation (irrigating to supplement precipitation so as to avoid crop failure or severe yield decline). Thus, WUE is key for agricultural production with limited water resources.

Policymakers and water resource managers working at all scales need to evaluate the many ways in which cropping systems and the amounts, timing, and methods of both irrigation and fertilizer applications may be changed to improve WUE while meeting yield and harvest quality goals. Field experiments are too costly to address all scenarios, but computer models of crop growth and yield may fill in the gaps if the models are shown to be accurate predictors of WUE.

An international team of experts led by the Food and Agriculture Organization of the United Nations developed an agronomic model called AquaCrop to address the need for modeling of WUE under widely varying conditions around the world and with limited data.

To look at the ability of this and other agronomic models to estimate WUE, a team member with the USDA Agricultural Research Service, Bushland, TX, organized a symposium, "Yield Response to Water: Examination of the Role of Crop Models in Predicting Water Use Efficiency," at the 2007 Annual International meeting of the Agronomy Society of America. Results using several agronomic models were discussed.

Nine papers arising from the symposium are published in a special section of the May-June 2009 issue of Agronomy Journal. The papers explore how four of the simulation models were used to simulate yield, water use, and WUE of cotton, maize (corn), quinoa, and sunflower in North and South America, Europe, and the Middle East. All the models simulated WUE adequately under well-watered conditions, but tended to overestimate or underestimate WUE under conditions of water stress. This limits their usefulness for exploration of deficit irrigation scenarios or rain-fed or dryland situations with less than adequate water.

According to symposium organizer Steve Evett, "Future studies exploring WUE simulation should include evaporation or transpiration measurements in addition to total crop water use measurements. In doing so, management methods that reduce evaporation in favor of transpiration can be studied and models of WUE can be tested and improved."

This examination of WUE estimation by multiple models helps close the gap that exists between what can be done using crop simulation models and what policymakers and managers need from these models in order to develop useful management alternatives for crop selection and timing, tillage systems, and irrigation and fertilization practices. Development of AquaCrop and several other models is continuing and will be guided by the findings of these studies.
-end-
The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://agron.scijournals.org/cgi/content/abstract/101/3/423.

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software. For more information visit: http://agron.scijournals.org.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

American Society of Agronomy

Related Irrigation Articles from Brightsurf:

Water consumption for trees is calculated in order to design precision irrigation systems
A University of Cordoba and Spanish National Research Council research team validated an indicator based on using a tree's temperature to calculate relative water consumption at an almond tree plantation

Water-saving alternative forage crops for Texas livestock
With increasing drought conditions in the Texas High Plains, researchers test sorghum and pearl millet as alternatives to corn.

Technology is studied that could save 12% of the energy used in pressurized irrigation
A study, performed in two Andalusian provinces, analyzed the potential of producing electricity by means of recovering hydraulic energy by implanting new technology based on pumps working as turbines

Can oilfield water safely be reused for irrigation in California?
Reusing low-saline oilfield water mixed with surface water to irrigate farms in the Cawelo Water District of California does not pose major health risks, as some opponents of the practice have feared, a study led by Duke University and RTI International researchers finds.

Expansion, environmental impacts of irrigation by 2050 greatly underestimated
New research suggests that the amount of farmland that will need to be irrigated to feed the global population by 2050 could be up to several billion acres, far higher than scientists currently project.

Turned-down temperatures boost crops' penchant for production
Drought and heat put stress on plants and reduce grain yield.

Irrigation alleviates hot extremes
Researchers from ETH Zurich and other universities found evidence that expanding irrigation has dampened anthropogenic warming during hot days, with particularly strong effects over South Asia.

Specifying irrigation needs for container-grown plants
Open-field production of 524,000 irrigated acres of horticultural plants in the United States used 205 billion gallons of water in a recent year.

Water management grows farm profits
A study investigates effects of irrigation management on yield and profit.

Oil and gas wastewater used for irrigation may suppress plant immune systems
A new Colorado State University study gives pause to the idea of using oil and gas wastewater for irrigation.

Read More: Irrigation News and Irrigation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.