Nav: Home

Made better through science: Calcite tuned to be mollusk-tough

May 04, 2016

ITHACA, N.Y. - No self-respecting construction engineer would ever choose pure calcite - a weak, brittle mineral found in chalk - as a building material.

But what if you could somehow strengthen calcite by a factor of two or more, the way a mollusk has done through the evolutionary process to protect itself from sharp-toothed predators?

Well, you still might not choose hardened calcite to build your home, but it might have other applications that, by virtue of its availability, could make it an attractive option for low-strength fabrication needs.

Cornell researchers, together with a team from the University of Leeds (U.K.), have jointly led an expansive, years-long international collaboration that has resulted in a paper detailing the ability to control and increase resistance to deformation in pure calcite through the introduction of amino acids.

The paper, "Tuning hardness in calcite by incorporation of amino acids," is published this month in Nature Materials.

"Why is it that a mollusk at the bottom of the ocean can make a single crystal of calcite that's solidly twice as hard as a naturally occurring, pure geologic calcite?" asked Shefford Baker, Cornell associate professor in the Department of Materials Science and Engineering.

That was the question he and colleague Lara Estroff, also an associate professor of materials science and engineering and a member of the Kavli Institute at Cornell for Nanoscale Science, had sought to answer through approximately six years of research.

Estroff and Baker worked with an international team. Fiona Meldrum and Yi-Yeoun Kim from Leeds co-led the study; additional collaborators included current Cornell graduate student Joseph Carloni and former grad student Miki Kunitake, both jointly advised by Estroff and Baker, and nine others from the United Kingdom and Israel.

"I don't think there's any way that all of these teams, having done their parts in isolation, could have come up with this paper," Baker said. "I don't think all the connections would have been understood."

The answer lies in aspartic acid (Asp) and glycine (Gly), amino acids that - when added in precise, controlled amounts - increased single-crystal calcite's hardness to values equivalent to biogenic calcite.

To create the model biominerals, the Meldrum group grew single-crystal calcite samples in a solution containing either Asp or Gly, the amount of amino acid present in the mineral dependent on the concentration of molecules in the solution.

"This was really a breakthrough," Estroff said, "to be able to have controlled and very well quantified amounts of amino acids within single crystals."

The structural characterization of these crystals required highly specialized techniques and the expertise of multiple researchers. Kirsty Penkman's group (University of York) precisely quantified the concentration of amino acids within the calcite crystals, and Melinda Duer's group (University of Cambridge) demonstrated that the molecules were distributed individually rather than in clumps.

In parallel, a group led by John Harding (University of Sheffield) conducted atomistic computer simulations to determine how the amino acid molecules were fit into the calcite lattice, and Kim, along with Boaz Pokroy (Technion) and researchers at the Diamond Light Source (U.K.), characterized the distortions the molecules induced in the calcite lattice.

Using this data, the Cornell team determined how far apart in nanometers the molecules were from each other. Then by comparing hardness measured by nanoindentation, they showed hardness was determined by the force needed to cut, or break, the covalent bonds within the amino acids.

The hardness of the model biominerals were the largest reported to date in man-made synthetic calcite and are consistent with those measured in naturally occurring biogenic calcites.

"This certainly opens up the door for us to think about how hard calcite could be made," Baker said. "Now that we're starting to understand the control mechanisms, the question is, could we make a system in which we go further than this?"
Funding for this research came from grants from the National Science Foundation and the Engineering and Physical Sciences Research Council (U.K.). This work made use of the Cornell Center for Materials Research Shared Facilities, which are supported by the NSF.

Cornell University

Related Amino Acids Articles:

A unique amino acid for brain cancer therapy
Researchers discover potential application of amino acid taurine in photodynamic therapy for brain cancer.
Nickel: A greener route to fatty acids
Chemists designed a nickel catalyst that easily transforms petroleum feedstocks into valuable compounds like fatty acids.
Amino acids in diet could be key to starving cancer
Cutting out certain amino acids - the building blocks of proteins -- from the diet of mice slows tumor growth and prolongs survival, according to new research published in Nature.
How to brew high-value fatty acids with brewer's yeast
Researchers at Goethe University Frankfurt have succeeded in producing fatty acids in large quantities from sugar or waste containing sugar with the help of yeasts.
Diverse natural fatty acids follow 'Golden Mean'
Bioinformatics scientists at Friedrich Schiller University in Jena (Germany) have discovered that the number of theoretically possible fatty acids with the same chain length but different structures can be determined with the aid of the famous Fibonacci sequence.
Simple fats and amino acids to explain how life began
Life is a process that originated 3.5 billion years ago.
Newly revealed amino acid function could be used to boost antioxidant levels
A Japanese research team has become the first in the world to discover that 2-aminobutyric acid is closely involved in the metabolic regulation of the antioxidant glutathione, and that it can effectively raise levels of glutathione in the body when ingested.
An amino acid controls plants' breath
IBS plant scientists demonstrate that the amino acid L-methionine activates a calcium-channel regulating the opening and closing of tiny plant pores.
Genetic differences in amino acid metabolism are linked to a higher risk of diabetes
A study published today in the journal PLOS Medicine has identified the five genetic variants associated with higher levels of the branched-chain amino acids isoleucine, leucine and valine.
Withholding amino acid depletes blood stem cells, Stanford researchers say
A new study shows that a diet deficient in valine effectively depleted the blood stem cells in mice and made it possible to perform a blood stem cell transplantation on them.

Related Amino Acids Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".