# Equilibrium modeling increases contact lens comfort

May 04, 2016

According to the Vision Council of America, roughly 75% of adults in the United States require some form of vision correction. Yet only 10% of Americans wear contact lenses. Studies estimate that one in four initial contact-users finds the lenses uncomfortable and stops wearing them. Thus, increasing the comfort level of contact lenses and expanding the market is a continual objective in the vision industry.

In order to understand the factors that contribute to lens comfort, it is important to study the solid and fluid mechanics of a lens' interaction with an eye. In an article publishing this week in the SIAM Journal on Applied Mathematics, authors David Ross, Kara Maki, and Emily Holz design an equilibrium model to demonstrate the elastic stresses and suction pressure distribution between a soft hydrogel contact lens and an eye. The model allows arbitrary (radially-symmetric) lens shapes, eye shapes, and thickness profiles, and illustrates the dependence of pressure distribution on lens and eye shape. "The important thing about our model is that it identifies, and expresses mathematically, the essential elements that balance when a contact lens is in equilibrium: radial tension, hoop tension, and suction pressure," says Ross. "We established that other effects--like bending stresses and viscous stresses at the interface of the lens and the tear film--are negligible."

A contact lens acts as a suction cup on the eye. In any suction cup, a thin lubrication layer separates the two solids, at least one of which is deformed by the suction. In this case, the lens distorts its shape when placed on the eye, immersing itself in the naturally-occurring, thin post-lens tear film that acts as the lubrication layer and holds the lens in place. "The post-lens tear film transmits to the eye the normal stresses that deformation establishes in the contact lens," says Maki. This sustains the deformation. When the lens is at equilibrium, the suction pressure -- which pushes or pulls the lens towards or away from the eye -- integrates to zero and generates no net force on the lens; for the desired equilibrium to occur, pressure must balance with radial and hoop tension.

"The suction pressure is the only mechanical influence of the lens on the eye in equilibrium," says Ross. "So understanding it is essential to understanding how to design for comfort. During and after blinks there's also shear stress exerted by the tear film on the eye; but to understand that, we need to understand suction pressure."

Maki and Ross designed the model in 2014 for practitioners in the field of contact lens design. Now, along with Holz, they introduce a preliminary mathematical analysis of that model. "The model in the form we present in this paper is virtually identical to the model we originally derived by force balance," says Ross. "Good modeling practice in mathematical physics requires that you try to understand problems both from the force balance and the energy-minimization, or variational, perspectives. We wanted to find, apply, and analyze the variational formulation because it enriches the account of the application field problem."

Maki and Ross's first paper on this subject presented computational results. Subsequently, Holz computed numerical solutions of the equations, which helped the authors understand the structure of solutions and their reliance on input data. "We used our code to study the dependence of suction pressure distributions on eye and lens shapes," says Holz. "These studies were the starting point for the theoretical investigations whose results are presented in this paper."

Analysis of the model reveals telling results about lens thickness and pressure distribution, both of which affect comfort. "The biggest takeaway is that mundane-seeming application problems -- a hydrogel lens is really just a suction cup -- can yield tough math problems," says Maki. "While we're pleased with the crispness of our formulation, the problem is a singular, complicatedly-nonlinear, two-point boundary-value problem." The existence of a solution to this boundary problem depends on lens thickness; in some cases, no solution exists. Ultimately, the varied solutions -- or lack thereof -- confirm the influence of lens thickness and eye and lens shape in the model.

Ross et al. hope to use their model's results to reevaluate contact lens design and comfort, and are already working to put this into action. "We're working with collaborators at Bausch & Lomb to understand how the details of suction pressure profiles correlate with comfort," says Maki. "Then we can address the inverse problem of designing lens shapes and thickness profiles for optimal comfort." Increased comfort in contacts may also lend itself to novel applications of the lenses themselves, including drug administration (to treat glaucoma, for example), metabolic monitoring, augmented reality techniques, and sensory enhancement.

The authors are trying to generalize their model by eliminating the constraint of radial symmetry in the lens. "With asymmetric lenses suction pressure gradients in the post-lens tear film can drive flows that exert net shear stresses on lenses," says Ross. "We're generalizing our model to capture the motion of a lens over the course of a blink cycle."

Maki and Ross will present further advances in this research during a session on ocular modeling at the SIAM Conference on the Life Sciences in Boston this summer: http://www.siam.org/meetings/ls16/index.php
-end-
Email kerner@siam.org for an advance copy of the paper, or view other SIAM Nuggets.

Source Article:

Existence Theory for the Radially Symmetric Contact Lens Equation SIAM Journal on Applied Mathematics, Volume 76, no 3

About the authors: David Ross is a professor in the School of Mathematical Sciences at the Rochester Institute of Technology (RIT). He's worked on industrial applied mathematics, with a strong emphasis on PDE, for the past 30 years. Kara Maki is an assistant professor in the School of Mathematical Sciences at RIT. She is an applied mathematician who specializes in ocular applications. Emily Holz will join Genentech in San Francisco to work on pharmaceutical development after she receives her BS in Biomedical Engineering from RIT this spring. As an undergraduate she performed research with RIT, LSI Solutions, and the National Institute of Standards and Technology, in addition to Genentech. In 2015 she was awarded a Goldwater Scholarship.

Society for Industrial and Applied Mathematics

Related Contact Lenses Articles:

Ultra-thin camera creates images without lenses
Caltech engineers have built a camera that does not need lenses to focus light.
Are soft contact lenses safe for children? Risks seem no higher than in adults
Available evidence suggests that soft contact lenses can be safely prescribed to children and adolescents, with no increase in adverse effects compared to adults, according to a review in the June issue of Optometry and Vision Science, the official journal of the American Academy of Optometry.
Marker may help predict success with extended-wear contact lenses
A simple marker on eye examination may help vision care professionals predict which patients will have a higher or lower rate of problems after starting extended-wear contact lenses, reports a study in the April issue of Optometry and Vision Science, the official journal of the American Academy of Optometry.
Meta-lenses bring benchtop performance to small, hand-held spectrometer
A research team of physicists from Harvard University has developed new hand-held spectrometers capable of the same performance as large, benchtop instruments.
Cosmic lenses support finding on faster than expected expansion of the universe
By using galaxies as giant gravitational lenses, an international group of astronomers using the NASA/ESA Hubble Space Telescope have made an independent measurement of how fast the universe is expanding.
Patients unsuitable for LASIK could benefit from vision surgery using intraocular lenses
People who are unsuitable for LASIK because of moderate or extreme nearsightedness or severe astigmatism may benefit from a surgical procedure using intraocular lenses.
Interscatter enables first implanted devices, contact lenses, credit cards to 'talk' WiFi
University of Washington engineers have introduced a new way of communicating that allows power-constrained devices such as brain implants, contact lenses, credit cards and smaller wearable electronics to talk to everyday devices such as smartphones and watches.
'Revolutionary future' for contact lenses -- drug delivery, disease monitoring and more
Imagine contact lenses that can deliver medicines directly to the eye, slow progression of nearsightedness in children, or monitor glucose levels in patients with diabetes.
New insights into human tears could lead to more comfortable contact lenses
Chemical engineers at Stanford have discovered mechanical properties of the tear film on the eye's surface that can be used to manufacture contact lenses that more closely mimic the eye.
Contact lenses alter eye bacteria, making it more skin-like
Contact lenses may alter the natural microbial community of the eyes, according to a study published this week in mBio®, an online open-access journal of the American Society for Microbiology.

## Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".