Nav: Home

A faster and cheaper way to produce new antibiotics

May 04, 2016

A novel way of synthesising a promising new antibiotic has been identified by scientists at the University of Bristol. By expressing the genes involved in the production of pleuromutilin in a different type of fungus, the researchers were able to increase production by more than 2,000 per cent.

With resistance growing to existing antibiotics, there is a vital and urgent need for the discovery and development of new antibiotics that are cost effective. Promising developments are derivatives of the antibiotic pleuromutilin, which are isolated from the mushroom Clitopilus passeckerianus.

These new compounds are some of the only new class of antibiotics to join the market recently as human therapeutics. Furthermore, with their novel mode of action and lack of cross-resistance, pleuromutilins and their derivatives represent a class with further great potential, particularly for treating resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA) and extensively drug resistant tuberculosis (XTB).

However, mushrooms are basidiomycete fungi which are not generally amenable to strain improvement and fermentation.

Therefore, in collaboration with pharmaceutical company GSK, Bristol scientists carried out research to identify the genes involved in the production of pleuromutilin. They discovered that a seven-gene cluster is required to produce the antibiotic in C. passeckerianus.

The seven-gene pleuromutilin cluster was then reconstructed within a more industrial fungus, Aspergillus oryzae which belongs to a different group of fungi, the ascomycetes. This resulted in a significant increase (2,106 per cent) in production.

This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.

Co-author of the research, Professor Gary Foster said: "This was a massive team effort over many years to achieve this major breakthrough. It involved, in the School of Biological Sciences, the drug discovery team led by myself and Dr Andy Bailey, with Dr Colin Lazarus on alternative expression platforms. In addition, significant effort came from chemists at the University of Bristol led by Professor Chris Willis and Professor Russell Cox, and collaborative scientists in GSK.

"With this development, we are now ideally placed to develop novel derivatives and new antibiotics and produce them rapidly and cost effectively - something which is desperately needed globally."

A novel semisynthetic pleuromutilin, retapamulin, was launched by GSK as the drug Altabax.
-end-
Notes to editors

Paper


'Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production' by Andy Bailey, Fabrizio Alberti, Sreedhar Kilaru, Catherine Collins, Kate de Mattos-Shipley, Amanda Hartley, Patrick Hayes, Alison Griffin, Colin Lazarus, Russell Cox, Christine L Willis, Karen O'Dwyer, David Spence, Gary Foster in Scientific Reportshttp://www.nature.com/articles/srep25202

Issued by the Public Relations Office, Communications Division, University of Bristol, tel: (0117) 928 8896, email: hannah.johnson@bristol.ac.uk

University of Bristol

Related Antibiotics Articles:

Antibiotics promote resistance on experimental croplands
Canadian researchers have generated both novel and existing antibiotic resistance mechanisms on experimental farmland, by exposing the soil to specific antibiotics.
Why antibiotics fail
UCSB biologists correct a flaw in the way bacterial susceptibility to these drugs is tested.
Fungi have enormous potential for new antibiotics
Fungi are a potential goldmine for the production of pharmaceuticals.
Antibiotics can boost bacterial reproduction
The growth of bacteria can be stimulated by antibiotics, scientists at the University of Exeter have discovered.
Last-line antibiotics are failing
The ECDC's latest data on antimicrobial resistance and consumption shows that in 2015, antibiotic resistance continued to increase for most bacteria and antibiotics under surveillance.
Two antibiotics fight bacteria differently than thought
Two widely prescribed antibiotics -- chloramphenicol and linezolid -- may fight bacteria in a different way from what scientists and doctors thought for years, University of Illinois at Chicago researchers have found.
Preserving the power of antibiotics
News release describes efforts to address inappropriate antibiotic prescribing in emergency departments and urgent-care centers nationwide, which a JAMA study published this past May found rates as high as 50 percent for acute respiratory infections in US emergency departments.
Antibiotics could be cut by up to one-third, say dairy farmers
Nine in 10 dairy farmers participating in a new survey from the Royal Association of British Dairy Farmers (RADBF) say that the farming industry must take a proactive lead in the battle against antibiotic resistance.
Antibiotics may be inappropriate for uncomplicated diverticulitis
Antibiotics are advised in most guidelines on diverticulitis, which arises when one or more small pouches in the digestive tract become inflamed or infected.
New book on Antibiotics and Antibiotic Resistance from CSHLPress
'Antibiotics and Antibiotic Resistance' from CSHLPress examines the major classes of antibiotics, together with their modes of action and mechanisms of resistance.

Related Antibiotics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".