A faster and cheaper way to produce new antibiotics

May 04, 2016

A novel way of synthesising a promising new antibiotic has been identified by scientists at the University of Bristol. By expressing the genes involved in the production of pleuromutilin in a different type of fungus, the researchers were able to increase production by more than 2,000 per cent.

With resistance growing to existing antibiotics, there is a vital and urgent need for the discovery and development of new antibiotics that are cost effective. Promising developments are derivatives of the antibiotic pleuromutilin, which are isolated from the mushroom Clitopilus passeckerianus.

These new compounds are some of the only new class of antibiotics to join the market recently as human therapeutics. Furthermore, with their novel mode of action and lack of cross-resistance, pleuromutilins and their derivatives represent a class with further great potential, particularly for treating resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA) and extensively drug resistant tuberculosis (XTB).

However, mushrooms are basidiomycete fungi which are not generally amenable to strain improvement and fermentation.

Therefore, in collaboration with pharmaceutical company GSK, Bristol scientists carried out research to identify the genes involved in the production of pleuromutilin. They discovered that a seven-gene cluster is required to produce the antibiotic in C. passeckerianus.

The seven-gene pleuromutilin cluster was then reconstructed within a more industrial fungus, Aspergillus oryzae which belongs to a different group of fungi, the ascomycetes. This resulted in a significant increase (2,106 per cent) in production.

This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.

Co-author of the research, Professor Gary Foster said: "This was a massive team effort over many years to achieve this major breakthrough. It involved, in the School of Biological Sciences, the drug discovery team led by myself and Dr Andy Bailey, with Dr Colin Lazarus on alternative expression platforms. In addition, significant effort came from chemists at the University of Bristol led by Professor Chris Willis and Professor Russell Cox, and collaborative scientists in GSK.

"With this development, we are now ideally placed to develop novel derivatives and new antibiotics and produce them rapidly and cost effectively - something which is desperately needed globally."

A novel semisynthetic pleuromutilin, retapamulin, was launched by GSK as the drug Altabax.
-end-
Notes to editors

Paper


'Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production' by Andy Bailey, Fabrizio Alberti, Sreedhar Kilaru, Catherine Collins, Kate de Mattos-Shipley, Amanda Hartley, Patrick Hayes, Alison Griffin, Colin Lazarus, Russell Cox, Christine L Willis, Karen O'Dwyer, David Spence, Gary Foster in Scientific Reportshttp://www.nature.com/articles/srep25202

Issued by the Public Relations Office, Communications Division, University of Bristol, tel: (0117) 928 8896, email: hannah.johnson@bristol.ac.uk

University of Bristol

Related Antibiotics Articles from Brightsurf:

Insights in the search for new antibiotics
A collaborative research team from the University of Oklahoma, the Memorial Sloan Kettering Cancer Center and Merck & Co. published an opinion article in the journal, Nature Chemical Biology, that addresses the gap in the discovery of new antibiotics.

New tricks for old antibiotics
The study published in the journal Immunity reveals that tetracyclines (broad spectre antibiotics), by partially inhibiting cell mitochondria activity, induce a compensatory response on the organism that decreases tissue damage caused during infection.

Benefits, risks seen with antibiotics-first for appendicitis
Antibiotics are a good choice for some patients with appendicitis but not all, according to study results published today in the New England Journal of Medicine.

How antibiotics interact
Understanding bottleneck effects in the translation of bacterial proteins can lead to a more effective combination of antibiotics / study in 'Nature Communications'

Are antivitamins the new antibiotics?
Antibiotics are among the most important discoveries of modern medicine and have saved millions of lives since the discovery of penicillin almost 100 years ago.

Hygiene reduces the need for antibiotics by up to 30%
A new paper published in the American Journal of Infection Control (AJIC), finds improved everyday hygiene practices, such as hand-washing, reduces the risk of common infections by up to 50%, reducing the need for antibiotics, by up to 30%.

Antibiotics: City dwellers and children take the most
City dwellers take more antibiotics than people in rural areas; children and the elderly use them more often than middle-aged people; the use of antibiotics decreases as education increases, but only in rich countries: These are three of the more striking trends identified by researchers of the NRW Forschungskolleg ''One Health and Urban Transformation'' at the University of Bonn.

Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.

Antibiotics from the sea
The team led by Prof. Christian Jogler of Friedrich Schiller University, Jena, has succeeded in cultivating several dozen marine bacteria in the laboratory -- bacteria that had previously been paid little attention.

Antibiotics not necessary for most toothaches, according to new ADA guideline
The American Dental Association (ADA) announced today a new guideline indicating that in most cases, antibiotics are not recommended for toothaches.

Read More: Antibiotics News and Antibiotics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.