Nav: Home

Groundbreaking images of nearby star give new insight into sun's infancy

May 04, 2016

Pioneering new research that has provided close-up pictures of a nearby star has given a fascinating insight into how the Sun may have behaved billions of years ago.

A team of international astronomers, including Professor Stefan Kraus from the University of Exeter, have used cutting-edge techniques to create the first direct image of surface structures on the star Zeta Andromedae - found 181 light years from Earth.

In order to image the star's surface during one of its 18-day rotations, the researchers used a method called interferometry, where the light of physically separate telescopes is combined in order to create the resolving power of a 330m telescope.

They discovered the star, which is found in the northern constellation of Andromeda, showed signs of 'starspots' - the equivalent of sunspots found within our own solar system. The pattern of these spots differs significantly from those found on the Sun.

The researchers suggest these results challenge current understandings of how magnetic fields of stars influence their evolution. Furthermore, they believe that the findings offer a rare glimpse of how the Sun behaved in its infancy, while the solar system was first forming.

The findings are published in leading scientific journal Nature on May 4.

Professor Kraus, an Associate Professor in Astrophysics at the University of Exeter said: "Most stars behave like giant rotating magnets and starspots are the visible manifestation of this magnetic activity. Imaging these structures can help us to decipher the workings that take place deep below the stellar surface."

Sunspots and starspots are cooler, darker areas of a star's outer shell that form when stronger regions of the magnetic field block the flow of heat and energy in patches. However, while on the Sun spots only form in bands just above and below its equator, the team found something quite different on Zeta Andromedae.

As well as one starspot in the star's northern polar region, there were also several additional spots that spread across lower latitudes. The images shows, for the first time, that stars with strong magnetic fields could have spots near their pole.

"While imaging sunspots was one of the first things that Galileo did when he started using the newly invented telescope, it has taken more than 400 years for us to make a powerful enough telescope that can image spots on stars beyond the Sun," said John Monnier, professor of astronomy in the University of Michigan's College of Literature, Science and the Arts.

"It's important to understand the Sun's history because that dictates the Earth's history -- its formation and the development of life," said Rachael Roettenbacher, a postdoctoral researcher in astronomy who conducted this research as part of her doctoral thesis at the University of Michigan. "The better we can constrain the conditions of the solar environment when life formed, the better we can understand the requirements necessary for the formation of life."

"Our images unambiguously show polar starspots on Zeta Andromedae for the first time. Now we can see that the spots aren't restricted to forming only in symmetric bands around the equator as sunspots are. We see the starspots in both hemispheres and at all different latitudes. This can't be explained by extrapolating theories about the Sun's magnetic field."

And the additional, lower latitude spots are spread over such an extended cool region that the scientists say they've found evidence that magnetic fields can suppress heat flow across a large part of the star's surface, rather than just in spots. Astronomers use star temperatures to estimate their ages, so they need to know if anything, such as these extended cool regions, is throwing off those temperature measurements.
-end-


University of Exeter

Related Solar System Articles:

From rocks in Colorado, evidence of a 'chaotic solar system'
Plumbing a 90 million-year-old layer cake of sedimentary rock in Colorado, a team of scientists from the University of Wisconsin-Madison and Northwestern University has found evidence confirming a critical theory of how the planets in our solar system behave in their orbits around the sun.
Why are there different 'flavors' of iron around the Solar System?
New work from Carnegie's Stephen Elardo and Anat Shahar shows that interactions between iron and nickel under the extreme pressures and temperatures similar to a planetary interior can help scientists understand the period in our Solar System's youth when planets were forming and their cores were created.
Does our solar system have an undiscovered planet? You can help astronomers find out
ASU's Adam Schneider and colleagues are hunting for runaway worlds in the space between stars, and citizen scientists can join the search with a new NASA-funded website.
Rare meteorites challenge our understanding of the solar system
Researchers have discovered minerals from 43 meteorites that landed on Earth 470 million years ago.
New evidence on the formation of the solar system
International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.
Planet Nine could spell doom for solar system
The solar system could be thrown into disaster when the sun dies if the mysterious 'Planet Nine' exists, according to research from the University of Warwick.
Theft behind Planet 9 in our solar system
Through a computer-simulated study, astronomers at Lund University in Sweden show that it is highly likely that the so-called Planet 9 is an exoplanet.
Studying the solar system with NASA's Webb Telescope
NASA's James Webb Space Telescope will look across vast distances to find the earliest stars and galaxies and study the atmospheres of mysterious worlds orbiting other stars.
'This solar system isn't big enough for the both of us.' -- Jupiter
It's like something out of an interplanetary chess game. Astrophysicists at the University of Toronto have found that a close encounter with Jupiter about four billion years ago may have resulted in another planet's ejection from the Solar System altogether.
IBEX sheds new light on solar system boundary
In 14 papers published in the October 2015 Astrophysical Journal Supplement, scientists present findings from NASA's Interstellar Boundary Explorer, or IBEX, mission providing the most definitive analyses, theories and results about local interstellar space to date.

Related Solar System Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".