Nav: Home

Aggregated protein in nerve cells can cause ALS

May 04, 2016

Persons with the serious disorder ALS, can have a genetic mutation that causes the protein SOD1 to aggregate in motor neurons in the brain and spinal cord. Researchers at Umeå University have discovered that, when injected into mice, the SOD1 aggregation spreads rapidly leading to ALS. The discovery has been described in the Journal of Clinical Investigation.

ALS, Amyotrophic lateral sclerosis, is a disorder which causes death of motor neurons in the brain and the spinal cord in charge of controlling muscles. This leads to progressive paralysis and death, often due to carbon dioxide narcosis.

"The occurrence of SOD1 aggregates in nerve cells in ALS patients has been known for a while," says Thomas Brännström, professor of Pathology at Umeå University and one of the authors of the article.

"But it has long been unclear what role the SOD1 aggregates play in the disease progression in humans carrying hereditary traits for ALS. We have now been able to show that the SOD1 aggregates start a domino effect that rapidly spreads the disease up through the spinal cord of mice. We suspect that this could be the case for humans as well."

Researchers at the Departments of Medical Biosciences and Pharmacology and Clinical Neuroscience at Umeå University have examined whether the accumulation of the SOD1 aggregates inside nerve cells drives the ALS disease or if it is a harmless side-effect. The research team has been able to identify two different kinds of SOD1 aggregates in mice. The results showed that both kinds caused a spread of SOD1 aggregation when a small amount was injected into the spinal cord of mice. The accumulation of aggregates progressed in nerve cells along the entire spinal cord of the mice at the same time as it led to a rapid and eventually mortal outcome of the disease.

"The results show that the aggregation of SOD1 plays a critical role in the disease progression - a research hypothesis that ALS researchers in Umeå long has based its work upon," says Stefan Marklund, professor of Clinical Chemistry. "More research is necessary, but our aim is to develop interventions that prevent or stop the fatal course of the disease in carriers of hereditary traits of ALS."
-end-


Umea University

Related Spinal Cord Articles:

Neurological signals from the spinal cord surprise scientists
With a study of the network between nerve and muscle cells in turtles, researchers from the University of Copenhagen have gained new insight into the way in which movements are generated and maintained.
An 'EpiPen' for spinal cord injuries
An injection of nanoparticles can prevent the body's immune system from overreacting to trauma, potentially preventing some spinal cord injuries from resulting in paralysis.
From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.
Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.
Gene medication to help treat spinal cord injuries
The two-gene medication has been proven to recover motor functions in rats.
Spinal cord is 'smarter' than previously thought
New research from Western University has shown that the spinal cord is able to process and control complex functions, like the positioning of your hand in external space.
The lamprey regenerates its spinal cord not just once -- but twice
Marine Biological Laboratory (MBL) scientists report that lampreys can regenerate the spinal cord and recover function after the spinal cord has been severed not just once, but twice in the same location.
Timing could mean everything after spinal cord injury
Moderate damage to the thoracic spinal cord causes widespread disruption to the timing of the body's daily activities, according to a study of male and female rats published in eNeuro.
New approach could jumpstart breathing after spinal cord injury
A research team at the Krembil Research Institute in Toronto has developed an innovative strategy that could help to restore breathing following traumatic spinal cord injury.
Dr. Jekyll, Mr. Hyde: Study reveals healing mesenchymal cells morph and destroy muscles in models of spinal cord injury, ALS and spinal muscular atrophy
Scientists at Sanford Burnham Prebys Medical Discovery Institute (SBP), in collaboration with the Fondazione Santa Lucia IRCCS in Rome, have discovered a new disease-specific role in FAP cells in the development of muscle tissue wasting, indicating a potential new avenue for treating motor neuron diseases including spinal cord injury, ALS and spinal muscular atrophy.
More Spinal Cord News and Spinal Cord Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.