Nav: Home

New self-sustained multi-sensor platform for environmental monitoring

May 04, 2017

A recent study, affiliated with UNIST has engineered a self-sustaining sensor platform to continuously monitor the surrounding environment without having an external power source.

This research has been led by the team of Professor Jaehyouk Choi of Electrical and Computer Engineering at UNIST in collaboration with Professor Wonjoon Choi of Mechanical Engineering at Korea University. The findings, published in the March issue of the prestigious journal, Nano Energy note that the proposed platform is expected to contribute to advanced sensing functions of a self-sustaining system for various targeted-ambient elements.

In the study the research team presented a self-sustaining water-motion-sensing (SS-WMS) platform to monitor and display the time-varying dynamics of water-motion, such as frequency and amplitude, using only the energy harvested from the water-motion itself.

A self-sustaining sensor platform is a core component for Internet-of-Things (IoTs) and smart-grid systems. The existing sensor platforms require energy to operate and display the detected information. Therefore, monitoring, processing, and displaying the minute changes of a targeted-environmental element in a real-time fashion without the use of external power sources or energy storages, like batteries has been challenging.

The research team solved this problem with the use of energy harvesting, an essential technology for permanent sensor platforms. Energy harvesting, also known as energy scavenging, is a technology for the harvesting of energy from various sources in the ambient environment, such as wind, water, light, heat, and mechanical energy for conversion into convebient use electric energy.

"It is virtually impossible to manually power a large number of sensors or periodically replace the batteries," says Professor Choi at UNIST. "The newly-developed semiconductor circuit is capable of performing multiple functions simultaneously, which include energy harvesting and analysis of dynamics."

The proposed sensor platform consists of a water-contact-based triboelectric nanogenerator (WC-TENG), a self-sustaining water-motion sensor integrated circuit (SS-WMS IC) on a test printed circuit board (PCB), and an LED array for displaying the detected frequencies and amplitudes of water motion.

The circuits that store the harvested electrical energy and simultaneously analyze the signals are made using CMOS (Complementary Metal-Oxide Semiconductor) process. CMOS is an economically feasible method used in the production of semiconductors, as well as analog and digital circuits. It is composed of P-type and N-type transistors and can be designed as circuits that process various signals. Moreover, due to the low cost of manufacturing, it is also advantageous for commercialization.

In this study, Professor Choi's team designed the SS-WMS IC based on standard 65-nm CMOS technology, so that one CMOS semiconductor chip about the size of a grand of sand to perform multiple functions simultaneously.

According to the research team, their newly-developed SS-WMS platform has overcome the intrinsic limitations of prior self-sustaining sensors by improving the reliability and the continuity of real-time operation and delivering more useful and sophisticated information of the targeted ambient elements.

It is also capable of conducting energy generation and harvesting, capacitor charging, water motion analysis, as well as LED control for displaying sensed information without hampering the mobility of sensors or demanding significant efforts and costs for follow-up management, respectively

Moreover, because the integrated one-platform concept requires no external power source and significanly reduces energy storage requirements, it can be applied to wireless or no-power sensor platform and grid-scale renewable energy plants, the research team notes.

Professor Choi notes, "This newly-developed sensor platform is a low-power device that is operated solely by the energy harvested from the water-motion itself." He adds, "It can be used as an environmental sensor platform for continuous monitoring of the flows of water or currents, the total amount of rainfall per hour, as well as a leak or accidental spill of hazardous waste at industrial sites."

"The entire platform operation can be powered solely by the harvested energy from the WC-TENG," says Professor Choi. "We expect this platform can contribute to the development of new types of self-sustaining sensing platforms for liquids, such as seawater and wave dynamics, rainfall tracking, and permanent liquid-leakage monitoring systems."
-end-
This work has been supported by the Basic Science Research Programs through the National Research Foundation of Korea (NRF), funded by the Ministry of Education and the Ministry of Science, ICT & Future Planning.

Journal Reference

Dongjoon Shin,Taeho Seong, Jaehyouk Choi, and Wonjoon Choia, "Self-sustaining water-motion sensor platform for continuous monitoring of frequency and amplitude dynamics," Nano Energy, (2017).

Ulsan National Institute of Science and Technology(UNIST)

Related Technology Articles:

How technology use affects at-risk adolescents
More use of technology led to increases in attention, behavior and self-regulation problems over time for adolescents already at risk for mental health issues, a new study from Duke University finds.
Hold-up in ventures for technology transfer
The transfer of technology brings ideas closer to commercialization. The transformation happens in several steps, such as invention, innovation, building prototypes, production, market introduction, market expansion, after sales services.
The ultimate green technology
Imagine patterning and visualizing silicon at the atomic level, something which, if done successfully, will revolutionize the quantum and classical computing industry.
New technology detects COPD in minutes
Pioneering research by Professor Paul Lewis of Swansea University's Medical School into one of the most common lung diseases in the UK, Chronic Obstructive Pulmonary Disease, has led to the development of a new technology that can quickly and easily diagnose and monitor the condition.
New technology for powder metallurgy
Tecnalia leads EFFIPRO (Energy EFFIcient PROcess of Engineering Materials) project, which shows a new manufacturing process using powder metallurgy.
New milestone in printed photovoltaic technology
A team of researchers at Friedrich-Alexander-Universit├Ąt have achieved an important milestone in the quest to develop efficient solar technology as an alternative to fossil fuels.
Gene Drive Technology: Where is the future?
For this episode of BioScience Talks, we're joined by Gene Drive Committee co-chair James P.
Could Hollywood technology help your health?
The same technology used by the entertainment industry to animate characters such as Gollum in 'The Lord of The Rings' films, will be used to help train elite athletes, for medical diagnosis and even to help improve prosthetic limb development, in a new research center at the University of Bath launched today.
Assessing carbon capture technology
Carbon capture and storage could be used to mitigate greenhouse gas emissions and thus ameliorate their impact on climate change.
New technology for dynamic projection mapping
It has been thought technically difficult to achieve projection mapping onto a moving/rotating object so that images look as though they are fixed to the object.

Related Technology Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...