Nav: Home

With more light, chemistry speeds up

May 04, 2017

Light initiates many chemical reactions. Experiments at the Laser Centre of the Institute of Physical Chemistry of the Polish Academy of Sciences and the University of Warsaw's Faculty of Physics have for the first time demonstrated that increasing the intensity of illumination some reactions can be significantly faster. Here, acceleration was achieved using pairs of ultrashort laser pulses.

Light-induced reactions can be accelerated by increasing the intensity of illumination -- this has been demonstrated in experiments carried out at the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw. In order to thoroughly investigate the nature of the processes involved, ultra-short consecutive pairs of laser pulses were used, and an increase in the rate of reaction between the molecules was observed by up to several dozen percent. The observations of the Warsaw scientists have been reported in the well-known scientific journal Physical Chemistry Chemical Physics.

"Our experiments provide fundamental knowledge about the physical processes that are important for the course of important light-induced reactions. This knowledge can potentially be used in many applications, especially when dealing with high intensity light sources. These include, among others, various microscopic imaging techniques, ultra-fast spectroscopy as well as photovoltaics, particularly if light-focusing devices such as solar collectors are used," says Dr. Gonzalo Angulo (IPC PAS).

In light-induced reactions, a photon with the appropriate energy excites a molecule of dye. When there is a molecule of quencher near the excited molecule, an interaction takes place: there may be a transfer of energy, an electron or a proton, between the two reactants. Reactions of this type are common in nature. A good example is electron transfer in photosynthesis, which plays a key role in the formation of the Earth's ecosystem.

It turns out that a factor that can influence the acceleration of reactions is the intensity of the light that initiates them. In order to study the nature of the processes taking place, the Warsaw chemists used laser pulses lasting femtoseconds instead of the traditional continuous stream of light. The energy of the impulses was adjusted so that, under their influence, the dye molecules moved into the excited energy state. The pulses were grouped in pairs. The interval between pulses in a pair was several dozen picoseconds (trillionths of a second) and was matched to the type of reacting molecules and the environment of the solution.

"The theory and the experiments required care and attention, but the physical idea itself is quite simple here," notes Jadwiga Milkiewicz, a PhD student at IPC PAS, and explains: "In order for the reaction to occur, there must be a molecule of quencher near the light-excited dye molecule. So, if we have a pair of molecules that have already reacted with each other this means that they were close enough to each other. By increasing the number of photons in time, we thus increase the chance that if, after the reaction, both molecules have managed to return to their ground state, the absorption of a new photon by the dye has the potential to initiate another reaction before the molecules move away from each other in space."

The course of reactions in solutions depends on many factors such as temperature, pressure, viscosity or the presence of an electric or magnetic field. The research at the IPC PAS has proved that these factors also influence the acceleration of the chemical reaction that occurs with an increased intensity of illumination. Under some conditions, the acceleration of the reaction was unnoticeable, in optimal conditions the rate of the reaction increased by up to 25-30%.

"In our experiments so far, we have concentrated on light-induced electron transfer reactions, that is, those which change the electrical charge of the molecules. However, we do not see any reason why the mechanism we have observed could not function in other variations of these reactions. So, in the near future, we will try to confirm its efficacy in energy transfer reactions or in reactions involving also proton transfer," says Dr. Angulo.
In addition to physicists and chemists from the IPC PAS and the Physics Faculty of the University of Warsaw, financed by the HARMONIA grant of the National Science Centre, a group headed by Prof. Gunther Grampp from Graz University of Technology participated in the experiments. In the Austrian laboratory, comparative experiments were carried out on samples illuminated in a continuous manner. Also involved in the team's theoretical work was Dr. Daniel Kattnig from the University of Oxford.

This press release was prepared with funds from the European ERA Chairs grant under the Horizon 2020 programme.

The Institute of Physical Chemistry of the Polish Academy of Sciences was established in 1955 as one of the first chemical institutes of the PAS. The Institute's scientific profile is strongly related to the newest global trends in the development of physical chemistry and chemical physics. Scientific research is conducted in nine scientific departments. CHEMIPAN R&D Laboratories, operating as part of the Institute, implement, produce and commercialise specialist chemicals to be used, in particular, in agriculture and pharmaceutical industry. The Institute publishes approximately 200 original research papers annually.

Institute of Physical Chemistry of the Polish Academy of Sciences

Related Chemical Reactions Articles:

Caught on camera -- chemical reactions 'filmed' at the single-molecule level
Scientists have succeeded in 'filming' inter-molecular chemical reactions -- using the electron beam of a transmission electron microscope as a stop-frame imaging tool.
Study: Some catalysts contribute their own oxygen for reactions
New MIT research shows that metal-oxide catalysts can sometimes release oxygen from within their structure, enhancing chemical activity.
Chemists uncover a means to control catalytic reactions
Scientists at the University of Toronto have found a way to make catalysis more selective, breaking one chemical bond 100 times faster than another.
Deep insights from surface reactions
Using the Stampede supercomputer at the Texas Advanced Computing Center, researchers have developed biosensors that can speed up drug development, designed improved materials for desalinization, and explored new ways of generating energy from bacteria.
Scientists trace 'poisoning' in chemical reactions to the atomic scale
A combination of experiments, including X-ray studies at Berkeley Lab, revealed new details about pesky deposits that can stop chemical reactions vital to fuel production and other processes.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
Scientists rev up speed of bionic enzyme reactions
Bionic enzymes got a needed boost in speed thanks to new research at the Berkeley Lab.
Adverse drug reactions may be under-reported in young children
A new study reveals that adverse drug reactions in newborns and infants may be under-reported.
New model predicts once-mysterious chemical reactions
A team of researchers from Los Alamos National Laboratory and Curtin University in Australia developed a theoretical model to forecast the fundamental chemical reactions involving molecular hydrogen.
Syracuse University chemists add color to chemical reactions
Members of the Maye Research Group at Syracuse University have designed a nanomaterial that changes color when it interacts with ions and other small molecules during a chemical reaction.

Related Chemical Reactions Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".