Nav: Home

Bio-inspired catalysts that work in water open door to greener chemical processes

May 04, 2017

Québec City, May 4, 2017 - Université Laval researchers have developed catalysts that, like enzymes present in living cells, are able to function efficiently in water. This discovery, the details of which were published today in Chemical Communications, shows that it may be possible to substantially reduce the use of toxic and non-recyclable organic solvents in a host of chemical reactions, particularly when synthesizing pharmaceutical ingredients.

"The vast majority of chemically synthesized compounds are produced by reactions using organic solvents," explains Normand Voyer, professor at Université Laval's Faculty of Science and Engineering and the study's lead author. "These solvents are toxic and difficult to reuse, but the industry turns to them because very few reactions can take place efficiently in water. However, all cellular reactions occur in an aqueous medium, without such organic solvents. That's what gave us the idea to develop a biomimetic process inspired by enzymes, the natural catalysts found in cells."

The researchers' solution is based on polypeptides, short chains of a single amino acid that, due to their hydrophobic nature, act as a catalyst in reactions involving non-water-soluble reagents and chemicals. "The most effective catalyst we have tested so far is poly-L-leucine," explains Professor Voyer. "Our work has allowed us to identify the conditions needed to ensure the catalyst's optimal efficacy in a classic reaction commonly used in chemistry, the epoxidation reaction. We've had yields of over 95%, which compares favorably with those achieved using organic solvents."

The use of such biomimetic polypeptide catalysts is advantageous both from an ecological and economic standpoint because they are inexpensive, they do not generate toxic waste and are reusable. "Now we're trying to demonstrate that this approach is viable for other important chemical processes used by the pharmaceutical, agrochemical, or food industries," the researcher concludes.
-end-
In addition to Normand Voyer, the study's co-authors are Christopher Bérubé, Xavier Barbeau, and Patrick Lagüe.

Information:
Normand Voyer
Faculty of Science and Engineering
Université Laval
418-656-3613
Normand.Voyer@chm.ulaval.ca

Université Laval

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...