Nav: Home

Improving control of age-related obesity

May 04, 2017

The function and distribution of adipose tissue in the body change during the course of life. Beige fat cells, a special type of adipocytes, have the capability to use energy reserves - fatty deposits - by generating heat in a process known as thermogenesis. With increasing age, beige adipocytes take on the morphology of white adipocytes. Thermogenic activity ceases and with it the cells' ability to burn fat. As a result, the risk of obesity increases. A team working with Freiburg researchers Prof. Dr. Roland Schüle and Dr. Delphine Duteil has now proven that the epigenetic enzyme lysine specific demethylase 1 (Lsd1) plays a key role in this transformation. They are presenting their results in the science journal Proceedings of the National Academy of Sciences (PNAS).

The number of beige adipocytes decreases when Lsd1 levels fall in aging adipose tissue. The group nevertheless was able to maintain Lsd1 production specifically in fat cells, and thereby reducing age-related transformation of beige to white adipose tissue. In an experiment with mice, the amount of beige adipocytes in older animals was maintained at nearly the level corresponding to that of younger mice. Conversely, the research team also showed that loss of Lsd1 in younger animals led to premature transformation of the fat cells. To observe this, the researchers marked the beige adipocytes with a fluorescent protein and reproduced their transformation to white adipose tissue.

Beige fat cells can be generated using cold treatment, for example. These then use fatty acids to produce warmth. Body weight gain is limited as a result. The researchers demonstrated that Lsd1 is not only essential for the development of beige adipocytes, but also for the maintenance of beige fat cells. Therefore, an elevated Lsd1 level is indispensable for the efficient burning of calories.

The analyses showed furthermore that Lsd1 maintains beige adipocytes by means of the target gene Pparα. This gene is interesting from a therapeutic standpoint, because selective and effective drugs can activate or suppress it with relative ease. In their experiments, the team proved that pharmacological activation of Pparα is sufficient to hinder the premature loss of beige fat cells in mice with low levels of Lsd1. The animals were therefore protected from metabolic disorders that are caused by Lsd1 loss.

Roland Schüle and Delphine Duteil carry out their research at the Department of Urology and Clinical Research Center at the Freiburg University Medical Center. Schüle is a member of the cluster of excellence the BIOSS Centre for Biological Signalling Studies of the University of Freiburg.
-end-
Original publication: Delphine Duteil, Milica Tosic, Dominica Willmann, Anastasia Georgiadi, Toufike Kanouni, and Roland Schüle (2016). Lsd1 prevents age-programmed loss of beige adipocytes. PNAS. doi: 10.1073/pnas.1702641114

Read about Roland Schüle's research in "uni'wissen": http://www.pr2.uni-freiburg.de/publikationen/uniwissen/uniwissen-2014-1-en/#/8

Caption: Lsd1 placed on white adipocytes (red) prevents the aging of beige adipose tissue (yellow). Photo: Delphine Duteil

Contact:
Prof. Dr. Roland Schüle
Department of Urology and Clinical Research Center
Freiburg University Medical Center
BIOSS Centre for Biological Signalling Studies
Tel.: 0761/270-63100
E-Mail: roland.schuele@uniklinik-freiburg.de

Dr. Delphine Duteil
Clinical Research Center
Freiburg University Medical Center
Tel.: 0761/270-63390
E-Mail: delphine.duteil@uniklinik-freiburg.de

University of Freiburg

Related Fat Cells Articles:

Why our brain cells may prevent us burning fat when we're dieting
A study carried out in mice may help explain why dieting can be an inefficient way to lose weight: key brain cells act as a trigger to prevent us burning calories when food is scarce.
Fat cells step in to help liver during fasting
How do mammals keep two biologically crucial metabolites in balance during times when they are feeding, sleeping, and fasting?
Making metabolically active brown fat from white fat-derived stem cells
Researchers have demonstrated the potential to engineer brown adipose tissue, which has therapeutic promise to treat metabolic diseases such as obesity and type 2 diabetes, from white adipose-derived stem cells (ASCs).
Stem cells collected from fat may have use in anti-aging treatments
Adult stem cells collected directly from human fat are more stable than other cells -- such as fibroblasts from the skin -- and have the potential for use in anti-aging treatments, according to researchers from the Perelman School of Medicine at the University of Pennsylvania.
Giving the messages from fat cells a positive spin to prevent diabetes
A research team led by Children's National finds that losing weight through surgical approaches appears to reset chemical messages that fat cells send, substantially reducing people's risk of developing type 2 diabetes.
As cells age, the fat content within them shifts
As cells age and stop dividing, their fat content changes, along with the way they produce and break down fat and other molecules classified as lipids.
Tumor cells are dependent on fat to start metastasis
A study headed by Salvador Aznar Benitah, ICREA researcher at the Institute for Research in Biomedicine (IRB Barcelona), and published today in Nature identifies metastasis-initiating cells through a specific marker, namely the protein CD36.
Biologist awarded diabetes research prize for studies of fat cells
Columbia University has awarded the 2016 Naomi Berrie Award for Outstanding Achievement in Diabetes Research to Peter Arner, M.D., Ph.D., a Distinguished Professor in the Department of Medicine at the Karolinska Institute, whose studies on the turnover of fat tissue in the human body has revealed processes that contribute to obesity and diabetes.
When fat cells change their color
A team with the Freiburg researchers Prof. Dr. Roland Schuele and Dr.
Hormone that controls maturation of fat cells discovered at Stanford
Mature fat cells produce a hormone that regulates the differentiation of nearby stem cells in response to glucocorticoid hormones and high-fat diets, Stanford researchers have found.

Related Fat Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.