Nav: Home

Cage-constrained growth of engineered cartilage reduces swelling and improves function

May 04, 2017

New Rochelle, NY, May 4, 2017--Researchers have shown that a novel cage constraint can prevent engineered cartilage from swelling during growth in culture, leading to better collagen stability and enhanced functional properties of the cartilage. The innovative cage system, designed to limit growth of engineered tissues within a fixed volume and shape while providing sufficient nutrients, is described in an article in Tissue Engineering, Part A, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is part of a special issue on Musculoskeletal Tissue Engineering and is available free on the Tissue Engineering website until June 2, 2017.

Robert Nims, Gerard Ateshian, PhD, and coauthors from Columbia University, New York, NY, created the cage constraint system for growing engineered cartilage in culture to overcome the common problem of osmotic swelling pressure, which destabilizes immature collagen, inhibiting the development of a strong collagen framework needed to support cartilage formation. The researchers studied the growth of engineered cartilage constructs in two different types of scaffolds -- agarose and cartilage-derived matrix hydrogel -- and compared it to unconstrained growth.

In the article entitled "Constrained Cage Culture Improves Engineered Cartilage Functional Properties by Enhancing Collagen Network Stability," the authors report the differences in swelling-induced expansion, functional properties, and collagen content of the cartilage constructs grown in the two types of scaffolds or under unconstrained conditions.

"The management of mechanical forces in the development of engineered tissues is emerging as an important aspect of control. In this study, three-dimensional constraint is shown to make an important contribution to appropriate tissue maturation," says Tissue Engineering Co-Editor-in-Chief Peter C. Johnson, MD, Principal, MedSurgPI, LLC and President and CEO, Scintellix, LLC, Raleigh, NC.
-end-
Research reported in this publication was supported by the National Institutes of Health under Award Numbers R01 AR060361, R01 AR046568, R01 DE016525, and P41 EB002520. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

About the Journal

Tissue Engineering is an authoritative peer-reviewed journal published monthly online and in print in three parts: Part A, the flagship journal published 24 times per year; Part B: Reviews, published bimonthly, and Part C: Methods, published 12 times per year. Led by Co-Editors-In-Chief Antonios G. Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX, and Peter C. Johnson, MD, Principal, MedSurgPI, LLC and President and CEO, Scintellix, LLC, Raleigh, NC, the Journal brings together scientific and medical experts in the fields of biomedical engineering, material science, molecular and cellular biology, and genetic engineering. Tissue Engineering is the official journal of the Tissue Engineering & Regenerative Medicine International Society (TERMIS). Complete tables of content and a sample issue may be viewed online at the Tissue Engineering website. (http://www.liebertpub.com/ten)

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Stem Cells and Development, Human Gene Therapy, and Advances in Wound Care. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website. (http://www.liebertpub.com/)

Mary Ann Liebert, Inc./Genetic Engineering News

Related Tissue Engineering Articles:

Tissue engineering advance reduces heart failure in model of heart attack
Researchers have grown heart tissue by seeding a mix of human cells onto a 1-micron-resolution scaffold made with a 3-D printer.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
RIT awarded $1.8 million NIH grant to develop ultrathin membranes for tissue engineering
Researchers at Rochester Institute of Technology are advancing tissue engineering through new work in developing improved porous membranes that will be the 'scaffolds,' or foundational structures, for in vitro tissue models.
Iowa State researchers fabricate microfibers for single-cell studies, tissue engineering
Iowa State University researchers are using the science of microfluidics -- the study of fluids moving through channels just a millionth of a meter wide -- to design and fabricate microfiber scaffolds that support cell growth and tissue engineering.
Breakthrough for bone regeneration via double-cell-layered tissue engineering technique
Tokyo Medical and Dental University researchers developed a technique for attaching two distinct layers of cells on top of each other on an amnion-based scaffold.
More Tissue Engineering News and Tissue Engineering Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.