Nav: Home

3-D printers open new design space for wireless devices

May 04, 2017

DURHAM, N.C. -- Researchers at Duke University have 3-D printed potent electromagnetic metamaterials, using an electrically conductive material compatible with a standard 3-D printer.

The demonstration could revolutionize the rapid design and prototyping of radio frequency applications such as Bluetooth, Wi-Fi, wireless sensing and communications devices.

Metamaterials are synthetic materials composed of many individual, engineered devices called cells that together produce properties not found in nature. As an electromagnetic wave moves through the metamaterial, each engineered cell manipulates the wave in a specific way to dictate how the wave behaves as a whole.

Metamaterials can be tailored to have unnatural properties such as bending light backwards, focusing electromagnetic waves onto multiple areas and perfectly absorbing specific wavelengths of light. But previous efforts have been constrained to 2-D circuit boards, limiting their effectiveness and abilities and making their fabrication difficult.

In a new paper appearing online in the journal Applied Physics Letters, Duke materials scientists and chemists have shown a way to bring electromagnetic metamaterials into the third dimension using common 3-D printers.

"There are a lot of complicated 3-D metamaterial structures that people have imagined, designed and made in small numbers to prove they could work," said Steve Cummer, professor of electrical and computer engineering at Duke. "The challenge in transitioning to these more complicated designs has been the manufacturing process. With the ability to do this on a common 3-D printer, anyone can build and test a potential prototype in a matter of hours with relatively little cost."

The key to making 3-D printed electromagnetic metamaterials a reality was finding the right conductive material to run through a commercial 3-D printer. Such printers usually use plastics, which are typically terrible at conducting electricity.

While there are a few commercially available solutions that mix metals in with the plastics, none are conductive enough to create viable electromagnetic metamaterials. While metal 3-D printers do exist, they cost as much as $1 million and take up an entire room.

That's where Benjamin Wiley, Duke associate professor of chemistry, came in.

"Our group is really good at making conductive materials," said Wiley, who has been exploring these materials for nearly a decade. "We saw this gap and realized there was a huge unexplored space to be filled and thought we had the experience and knowledge to give it a shot."

Wiley and Shengrong Ye, a postdoctoral researcher in his group, created a 3-D printable material that is 100 times more conductive than anything currently on the market. The material is currently being sold under the brand name Electrifi by Multi3D LLC, a startup founded by Wiley and Ye. While still not nearly as conductive as regular copper, Cummer thought that it might just be conductive enough to create a 3-D printed electromagnetic metamaterial.

In the paper, Cummer and doctoral student Abel Yangbo Xie show that not only is Electrifi conductive enough, it interacts with radio waves almost as strongly as traditional metamaterials made with pure copper. That small difference is easily made up for by the printed metamaterials' 3-D geometry -- the results show that the 3-D printed metamaterial cubes interact with electromagnetic waves 14 times better than their 2-D counterparts.

By printing numerous cubes, each tailored to specifically interact with an electromagnetic wave in a certain way, and combining them like Lego building blocks, researchers can begin to build new devices. For the devices to work, however, the electromagnetic waves must be roughly the same size as the individual blocks. While this rules out the visible spectrum, infrared and X-rays, it leaves open a wide design space in radio waves and microwaves.

"We're now starting to get more aggressive with our metamaterial designs to see how much complexity we can build and how much that might improve performance," said Cummer. "Many previous designs were complicated to make in large samples. You could do it for a scientific paper once just to show it worked, but you'd never want to do it again. This makes it a lot easier. Everything is on the table now."

"We think this could change how the radio frequency industry prototypes new devices in the same way that 3-D printers changed plastic-based designs," said Wiley. "When you can hand off your designs to other people or exactly copy what somebody else has done in a matter of hours, that really speeds up the design process."
-end-
This work was supported by a Multidisciplinary University Research Initiative grant from the Office of Naval Research (N00014-13-1-0631).

Microwave Metamaterials Made by Fused Deposition 3D Printing of a Highly Conductive Copper-based Filament. Yangbo Xie, Shengrong Ye, Christopher Reyes, Pariya Sithikong, Bogdan Popa, Benjamin J. Wiley, and Steven A. Cummer. Applied Physics Letters, 2017. DOI: 10.1063/1.4982718

Duke University

Related Metamaterials Articles:

Ultrafast tunable semiconductor metamaterial created
An international team of researchers has devised an ultrafast tunable metamaterial based on gallium arsenide nanoparticles, as published by Nature Communications.
CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction
Control of light-matter interaction is central to fundamental phenomena and technologies such as photosynthesis, lasers, LEDs and solar cells.
3-D printers open new design space for wireless devices
Duke materials scientists and chemists have shown a way to bring electromagnetic metamaterials into the third dimension using commercial 3-D printers.
Legos and origami inspire next-generation materials
Inspired by the fun of playing with Legos, an international team of researchers from Tianjin University of Technology and Harvard University have used the idea of assembling building-blocks to make the promise of next-generation materials a practical reality.
Penn engineers' 'photonic doping' makes class of metamaterials easier to fabricate
By carefully combining multiple structures, metamaterials can exhibit properties that don't naturally exist.
New mechanical metamaterials can block symmetry of motion, findings suggest
Engineers and scientists at The University of Texas at Austin and the AMOLF institute in the Netherlands have invented the first mechanical metamaterials that easily transfer motion effortlessly in one direction while blocking it in the other.
A toolkit for transformable materials
Harvard researchers have developed a general framework to design reconfigurable metamaterials.
Metamaterials open up entirely new possibilities in optics
Researchers at Chalmers University of Technology have developed a method that enables them to manipulate light to follow any predetermined path along a surface.
Aviation enhancements, better biosensors could result from new sensor technology
Piezoelectric sensors measure changes in pressure, acceleration, temperature, strain or force and are used in a vast array of devices important to everyday life.
New math tools for new materials
University of Utah mathematician Graeme Milton presents a new tool for understanding how energy waves move through complex materials, opening up possibilities to design materials that absorb or bend energy as desired.

Related Metamaterials Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...