Nav: Home

Pac-Man-like CRISPR enzymes have potential for disease diagnostics

May 04, 2017

University of California, Berkeley, researchers have described 10 new CRISPR enzymes that, once activated, behave like Pac-Man to chew up RNA in a way that could be used as sensitive detectors of infectious viruses.

The new CRISPR enzymes are variants of a CRISPR protein, Cas13a, which the UC Berkeley researchers reported last September in Nature could be used to detect specific sequences of RNA, such as from a virus. They showed that once CRISPR-Cas13a binds to its target RNA, it begins to indiscriminately cut up all RNA, easily cutting RNA linked to a reporter molecule, making it fluoresce to allow signal detection.

Two teams of researchers at the Broad Institute subsequently paired CRISPR-Cas13a with RNA amplification, and showed that the system, which they dubbed SHERLOCK, could detect viral RNA at extremely low concentrations, detecting the presence of dengue and Zika viral RNA, for example.

Such a system could be used to detect any type of RNA, including RNA distinctive of cancer cells.

While the original Cas13a enzyme used by the UC Berkeley and Broad teams cuts RNA at one specific nucleic acid, uracil, three of the new Cas13a variants cut RNA at adenine. This difference allows simultaneous detection of two different RNA molecules, such as from two different viruses.

"We have taken our foundational research a step further in finding other homologs of the Cas13a family that have different nucleotide preferences, enabling concurrent detection of different reporters with, say, a red and a green fluorescent signal, allowing a multiplexed enzymatic detection system," said first author Alexandra East-Seletsky, a UC Berkeley graduate student in the laboratory of Jennifer Doudna, one of the inventors of the CRISPR-Cas9 gene-editing tool. East-Seletsky was also a co-first author of the September Nature paper.

East-Seletsky, Doudna and their UC Berkeley colleagues will report their findings May 4 in the journal Molecular Cell.

RNA killing spree

The CRISPR-Cas13a family, formerly referred to as CRISPR-C2c2, is related to CRISPR-Cas9, which is already revolutionizing biomedical research and treatment because of the ease of targeting it to unique DNA sequences to cut or edit. While the Cas9 protein cuts double-stranded DNA at specific sequences, the Cas13a protein - a nucleic acid-cutting enzyme referred to as a nuclease - latches onto specific RNA sequences, and not only cuts that specific RNA, but runs amok to cut and destroy all RNA present.

"Think of binding between Cas13a and its RNA target as an on-off switch -- target binding turns on the enzyme to go be a Pac-Man in the cell, chewing up all RNA nearby," East-Seletsky said. This RNA killing spree can kill the cell.

In their September Nature paper, the UC Berkeley researchers argued that the Pac-Man activity of CRISPR-Cas13a is its main role in bacteria, aimed at killing infectious viruses or phages. As part of the immune system of some bacteria, it allows infected cells to commit suicide to save their sister microbes from infection. Similar non-CRISPR suicide systems exist in other bacteria.

The UC Berkeley researchers subsequently searched databases of bacterial genomes and found 10 other Cas13a-like proteins, which they synthesized and studied to assess their ability to find and cut RNA. Of those, seven resembled the original Cas13a, while three differed in where they cut RNA. RNA, which serves many functions inside the cell, including as messenger RNA - working copies of DNA - consists of four different nucleotides: adenine, cytosine, guanine and uracil.

"Building on our original work, we now show that it is possible to multiplex these enzymes together, extending the scope of the technology," East-Seletsky said. "There is so much diversity within the CRISPR-Cas13a family that can be utilized for many applications, including RNA detection."

Doudna, a professor of molecular biology and of chemistry and a Howard Hughes Medical Institute investigator, noted that detection of infectious RNA may or may not require amplification, which is a complicated step.

"Our intention is to develop the Cas13a family of enzymes for point-of-care diagnostics that are robust and simple to deploy", Doudna said.
-end-
Co-authors with East-Seletsky and Doudna are former UC Berkeley postdoctoral fellow Mitchell O'Connell, now an assistant professor at the University of Rochester, and UC Berkeley postdocs David Burstein and Gavin Knott. The work was supported in part by a Frontiers Science award from the Paul Allen Institute and by the National Science Foundation (MCB-1244557).

University of California - Berkeley

Related Enzymes Articles:

Fungal enzymes team up to more efficiently break down cellulose
Cost-effectively breaking down bioenergy crops into sugars that can then be converted into fuel is a barrier to commercially producing sustainable biofuels.
How enzymes communicate
Freiburg scientists explain the cell mechanism that transforms electrical signals into chemical ones.
Pac-Man-like CRISPR enzymes have potential for disease diagnostics
UC Berkeley researchers have found 10 new variants of the Cas13a enzyme, the Pac-Man of the CRISPR world, that hold promise for disease diagnostics.
Hydrogen production: This is how green algae assemble their enzymes
Researchers at Ruhr-Universit├Ąt Bochum have analyzed how green algae manufacture complex components of a hydrogen-producing enzyme.
New studies unravel mysteries of how PARP enzymes work
A component of an enzyme family linked to DNA repair, stress responses, and cancer also plays a role in enhancing or inhibiting major cellular activities under physiological conditions, new research shows.
Understanding enzymes
A new tool can help researchers more accurately identify enzymes present in microbiomes and quantify their relative abundances.
Light powers new chemistry for old enzymes
Princeton researchers have developed a method that irradiates biological enzymes with light to expand their highly efficient and selective capacity for catalysis to new chemistry.
Research finds enzymes essential for DNA repair
Scientists at The Australian National University and Heidelberg University in Germany have found an essential component in the DNA repair process which could open the door to the development of new cancer drugs.
New step towards clean energy production from enzymes
Oxygen inhibits hydrogenases, a group of enzymes that are able to produce and split hydrogen.
Genetic diversity of enzymes alters metabolic individuality
Scientists from Tohoku University's Tohoku Medical Megabank Organization have published research about genetic diversity and metabolome in Scientific Reports.

Related Enzymes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.