Nav: Home

KIST ensures stability of desalination process with magnesium

May 04, 2020

A Korean research team found a method to inhibit the fouling of membranes, which are used in the desalination process that removes salt and dissolved substances from seawater to obtain drinking, domestic, and industrial water.

The Korea Institute of Science and Technology (KIST) announced that a research team led by Dr. Seongpil Jeong and Dr. Seockheon Lee at KIST's Water Cycle Research Center developed a *membrane distillation pretreatment process that adds magnesium to inhibit the fouling and wetting of membranes during desalination.

*Membrane distillation (MD): A technology used to produce fresh water from seawater in which the seawater is heated to produce a vapor, which is then passed through a hydrophobic membrane that traps the salt and other particles to produce fresh water.

The membrane distillation process is a desalination technology used to produce fresh water in which seawater is heated to generate a vapor, which is then passed through a hydrophobic membrane before condensing into fresh water. The phenomena of **fouling and ***wetting can often occur during the membrane distillation process. If fouling occurs, it can cause the production of fresh water to take much longer or shorten the lifespan of the membrane used in the distillation process, thereby increasing the costs associated with freshwater production.

**Fouling: A phenomenon in which contaminants (particles, organic/inorganic matters) attach to or penetrate the membrane, resulting in membrane scaling

***Wetting: A phenomenon in which seawater directly passes through a hydrophobic membrane, which theoretically only lets vapor pass through

The KIST research team monitored the membrane distillation process and found that the formation of calcium carbonate (CaCO3) and calcium sulfate (CaSO4) crystals on the membrane surface was the main cause of fouling. They also found that the formation of CaCO3 crystals occurred at the beginning of the membrane distillation process, causing partial membrane wetting, while the formation of CaSO4 crystals caused a complete membrane wetting, halting membrane operation.

****Anti-scalants are often applied to prevent fouling caused by calcium-based crystal growth in the desalination process. There have been some reports in the industry about a chemical *****softening technology that can be applied as a pretreatment process for membrane distillation. However, it has also been reported that organic anti-scalants can reduce the surface tension of the feed solution and cause wetting. The application of chemical softeners, however, requires additional large-scale sedimentation and filtering processes to remove the crystals formed during the softening process.

****Anti-scalants: Chemicals that remove ions (calcium, magnesium) that can lead to the formation of crystals (scales)

*****Softening: Process of turning hard water into soft water by removing the calcium and/or magnesium found in the water.

KIST's research team, led by Dr. Seongpil Jeong, is the first research team to ever develop a pretreatment process that adds magnesium to seawater. The team found that magnesium inhibits the formation of CaCO3 and CaSO4 and effectively prevents membrane fouling since the magnesium readily combines with the carbonate and sulfate ions in the seawater The team also found that the added magnesium chloride (MgCl2) increased the stability of the hydrophobic membrane, thereby increasing wetting resistance.

"Increasing the stability of the hydrophobic membrane is expected to help improve desalination efficiency and lengthen the lifespan of the membrane," said Hye-won Kim (first author of Water Research (Vol. 175 (2020) 115677)) at KIST. "The mineral-based, environmentally-friendly pretreatment is applicable not only to the membrane distillation process but also to various other desalination processes."
-end-
The research was conducted as a Ministry of Environment Plant Research Project and as one of Institutional Research Program of the Korea Institute of Science and Technology. An article explaining the results of the research was published in the latest issue of Water Research (IF: 7.913, top 0.549% of JCR).

National Research Council of Science & Technology

Related Calcium Articles:

'Give me the calcium!' Tulane virus takes over cellular calcium signaling to replicate
Researchers uncover the first piece of functional evidence suggesting that Tulane virus and human norovirus use viroporins to control cellular calcium signaling.
Carbon dots make calcium easier to track
Prof. DONG Wenfei's research group from the Suzhou Institute of Biomedical Engineering and Technology (SIBET) has developed a new type of fluorescent carbon dot that can effectively detect calcium levels in cells.
Calcium batteries: New electrolytes, enhanced properties
Calcium-based batteries promise to reach a high energy density at low manufacturing costs.
Chelated calcium benefits poinsettias
Cutting quality has an impact on postharvest durability during shipping and propagation of poinsettias.
New study uncovers the interaction of calcium channels
Korean researchers have identified the interactions of the combinants among calcium channel proteins that exist in nerve and heart cells.
Calcium-catalyzed reactions of element-H bonds
Calcium-catalyzed reactions of element-H bonds provide precise and efficient tools for hydrofunctionalization.
Memory molecule limits plasticity by calibrating calcium
Researchers at the Max Planck Florida Institute for Neuroscience in collaboration with researchers at Emory University and the National Institute of Environmental Health Sciences, have for the first time identified a novel role for the CA2-enriched protein RGS14 and provided insights into the mechanism by which it limits plasticity.
A bioengineered tattoo monitors blood calcium levels
Scientists have created a biomedical tattoo that becomes visible on the skin of mice in response to elevated levels of calcium in the blood.
The dinosaur menu, as revealed by calcium
By studying calcium in fossil remains in deposits in Morocco and Niger, researchers have been able to reconstruct the food chains of the past, thus explaining how so many predators could coexist in the dinosaurs' time.
Communication via calcium wave
The hormone auxin is a key regulator of plant growth and development.
More Calcium News and Calcium Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.