Nav: Home

Predators help prey adapt to an uncertain future

May 04, 2020

What effect does extinction of species have on the evolution of surviving species? Evolutionary biologists have investigated this question by conducting a field experiment with a leaf galling fly and its predatory enemies. They found that losing its natural enemies could make it more difficult for the prey to adapt to future environments.

According to many experts, the Earth is at the beginning of its sixth mass extinction, which is already having dire consequences for the functioning of natural ecosystems. What remains unclear is how these extinctions will alter the future ability of remaining species to adapt.

Researchers from the University of Zurich have now pursued this question with a field experiment in California. They investigated how the traits of a tiny fly changed when a group of its natural enemies was removed. From their observations, they drew conclusions about changes in the genetic diversity of the flies.

Specific elimination of parasitoids

The fly Iteomyia salicisverruca lives on willow leaves in tooth-shaped growths called galls, which it induces in its larval stage. The natural enemies of this fly include several species of parasitic wasps. These wasps lay their eggs inside the fly larva within the gall, where they then develop into parasitic predators known as parasitoids. Before the adult wasp leaves the gall, it devours its host, the fly.

Some species of these parasitoids attack before the gall is formed, while others parasitize fly larvae later in their development and pierce through the gall. The researchers specifically eliminated the latter group of natural enemies by attaching fine-meshed nets over leaves with galls before they were attacked.

After three months, the biologists collected about 600 galls and checked if the fly larvae had survived. They also measured three traits that influence a fly's survival from parasitoid attack: the size of the gall; the number of flies within a gall; and the fly's preference to create galls on particular genetic varieties of willow trees. Using these data they then created "fitness landscapes" using computer models, which visualize the adaptability of a species.

Fewer enemies, less variability

It turned out that different combinations of these three traits helped flies survive ? when all of the fly's natural enemies were present. "So there are several equally good solutions that ensure the survival of the fly," says Matt Barbour, the study's lead author. In contrast, after some natural enemies were removed, only one specific combination of traits helped flies survive. "This suggests that the extinction of natural enemies constrains fly evolution toward only one optimal solution." Genetic variations that lead to a different development of the traits could thus be permanently lost in the flies' genome.

This loss of diversity might be of consequence: "The diversity of potential solutions for survival acts to preserve genetic variability in the gall's traits," says Barbour. And since genetic variation provides the raw material for evolution, the findings suggest that the extinction of this fly's natural enemies may make it more difficult for it to adapt to a changing environment.

"Thinking about the big picture, our study hints at a potential insidious side effect of extinctions," says Barbour. "The extinction of natural enemies may compromise the ability of remaining species to adapt and persist in an uncertain and changing world." If this is true, this would put many ecosystems at even greater risk than we currently realize.
-end-


University of Zurich

Related Evolution Articles:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.