Discovery of bacterial enzyme activity could lead to new sugar-based drugs

May 04, 2020

Researchers from DTU Biosustain and DTU Bioengineering have elucidated the activity of the enzyme N-acetylgalactosaminidase (GH109) whose mechanism of activity has until now been a mystery. This enzyme can convert a group of low cost, abundant so-called beta-sugars into high-value, hard-to-produce alpha-sugars with interesting therapeutic properties.

This novel work on the chemistry and catalytic activity of this enzyme opens opportunities to a wide range of applications and has now been published in the well-renowned journal ACS Catalysis.

"We are very excited to have discovered how this human symbiont uses so far unknown chemistry to feed on human sugars. Now that we understand the chemistry behind this mode of action, we can change the enzyme to make valuable sugars," says David Teze, interim Group Leader of Enzyme Engineering at The Novo Nordisk Foundation Center for Biosustainability (DTU Biosustain) and first-author of this publication.

Bacterium with anti-cancer qualities

GH109 is found in the human gut bacterium Akkermansia muciniphila, where it degrades sugars in mucus found in the gut. When GH109 degrades the sugars of the mucus, it makes them into so-called alpha-GalNAc sugars, which it feeds on.

Biotechnologically, GH109 could allow for adding alpha-GalNAc to other compounds. This is particularly relevant, as alpha-GalNAc is the "hard to make" part of one of the most common cancer antigens, namely the Thomsen-Friedenreich antigen (Galβ1-3GalNAcα1). Thus, alpha-GalNAc sugars could potentially be formulated for cancer vaccines.

"Alpha-GalNAc containing sugars could be protective against cancer, but it is hard to synthesize enough of them for vaccines. But now, we may be able to optimize an enzyme to produce them biotechnologically," David Teze says.

These sugars also have health-promoting features by working as potent prebiotics (food for probiotic bacteria), and other studies also suggest that they have anti-inflammatory properties. But alpha-GalNAc sugars are hard to make chemically. This is why biological production is very interesting and, hence, the function of GH109 becomes very interesting.

Using bioinformatics, mutational analysis, structural analysis, computational modeling as well as crystallography studies - the latter being conducted in one of the world's most powerful X-ray facilities, MaxIV, in Lund, Sweden - the researchers revealed an interesting feature of GH109. The active site, which is where the enzyme activity takes place, could actually handle two types of input molecules (alpha and beta glycans). The enzyme does this by having a flexible 'arm' that place the right input in the active site.

Due to this revelation, the researchers have a clearer idea about how to optimise this enzyme, opening an opportunity to big scale, green production of α-GalNAc's in the future.

Technical University of Denmark

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to