Nav: Home

How to put neurons into cages

May 04, 2020

Microscopically small cages can be produced at TU Wien (Vienna). Their grid openings are only a few micrometers in size, making them ideal for holding cells and allowing living tissue to grow in a very specific shape. This new field of research is called "Biofabrication".

In a collaboration with Stanford University, nerve cells have now been introduced into spherical cage structures using acoustic bioprinting technology, so that multicellular nerve tissue can develop there. It is even possible to create nerve connections between the different cages. To control the nerve cells, sound waves were used as acoustic tweezers.

Football Shaped Cages

"If you present living cells with a certain framework, you can strongly influence their behavior," explains Prof. Aleksandr Ovsianikov, head of the 3D-Printing and Biofabrication research group at the Institute for Materials Science and Materials Technology at TU Wien. "3D printing enables the high-precision production of scaffolding structures, which can then be colonized with cells to study how living tissue grows and how it reacts".

In order to grow large numbers of nerve cells in a small space, the research team decided to use so-called "buckyballs" - geometric shapes made of pentagons and hexagons that resemble a microscopic football.

"The openings of the buckyballs are large enough to allow cells to migrate into the cage, but when the cells coalesce, they can no longer leave the cage," explains Dr. Wolfgang Steiger, who worked on high-precision 3D printing for biofabrication applications as part of his dissertation.

The tiny buckyball cages were manufactured using a process known as two-photon polymerization: a focused laser beam is used to start a chemical process at specific points in a liquid, which causes the material to harden at precisely these points. By steering the focal point of the laser beam through the liquid in a well-controlled way, three-dimensional objects can be produced with extremely high precision.

Acoustic Waves as Tweezers

Not only creating the buckyballs, but also assembling cells into these balls through microscale openings is very challenging. An innovative 3-D acoustic bioprinting technology developed at the Stanford School of Medicine, successfully addressed this challenge. Prof. Utkan Demirci co-directs the Canary Center at Stanford for Early Cancer Detection and his research group, i.e., the Biosensing and Acoustic MEMS in Medicine (BAMM Lab) uses acoustic waves in biomedical applications from sensing cancer biomarkers to bioprinting 3-D tissue models to sensing.

"We generate acoustic oscillations in the solution in which the cells are located. The cells follow the sounds waves like rats follow the Pied Piper of Hamelin as in the legend In the process, nodes of oscillation form at certain points - similar to a vibrating string", says Prof. Demirci. At these nodal points, the liquid is comparatively static. If cells are located at these points, they remain there; everywhere else they are moved away by the acoustic wave. The cells therefore move to the spots where they are not whirled around - and that is where the buckyballs were placed. The sound wave can thus be used in a very well-controlled way, almost like tweezers, to direct the cells to the desired location.

"The acoustic waves enabled us to fill the scaffold structures much more densely and efficiently than would have been possible with conventional methods of cell colonization," reports Tanchen Ren, PhD, from Prof. Demirci's research group.

Once the buckyballs had been successfully colonized with nerve cells in this way, they formed connections with neurons of neighboring buckyballs. "We see enormous potential here for using 3D printing to create and study neural networks in a targeted manner," says Aleksandr Ovsianikov. "In this way, important biological questions can be investigated to which one would otherwise have no direct experimental access."
-end-
Contact

Prof. Aleksandr Ovsianikov
Institute of Materials Science and Technology
TU Wien
Getreidemarkt 9, 1060 Wien
T +43-1-58801-30830
aleksandr.ovsianikov@tuwien.ac.at

Prof. Utkan Demirci
Canary Center for Cancer Early Detection
Stanford University
Stanford, California
utkan@stanford.edu

Vienna University of Technology

Related Neurons Articles:

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.