Study highlights gallium oxide's promise for next generation radiation detectors

May 04, 2020

New research from North Carolina State University finds that radiation detectors making use of single-crystal gallium oxide allow for monitoring X-ray radiation in near-real time.

"We found that the gallium oxide radiation detector worked very fast, which could offer benefits to many applications such as medical imaging," says Ge Yang, an assistant professor of nuclear engineering at NC State and corresponding author of a paper on the work. "This is particularly exciting because recent research tells us that gallium oxide has excellent radiation hardness - meaning it will keep doing its job even when exposed to high amounts of radiation.

"In short, we think this material is faster than many existing materials used in X-ray detection - and able to withstand higher levels of radiation."

For this study, the researchers made a radiation detector that incorporated a single-crystal sample of gallium oxide with electrodes attached on either side. The researchers applied different bias voltages across the gallium oxide while exposing the material to X-ray radiation.

The researchers found that there was a linear increase in current passing out of the gallium oxide relative to the level of X-ray exposure. In other words, the higher the level of X-ray radiation exposure, the higher the increase in current from the gallium oxide.

"This linear relationship, coupled with the fast response time and radiation hardness, make this a very exciting material for use in radiation detector technologies," Yang says. "These could be used in conjunction with medical imaging technologies, or in security applications like those found at airports."
The paper, "Fast X-ray detectors based on bulk β-Ga2O3 (Fe)," is published in the Journal of Materials Science. First author of the paper is Ibrahim Hany, a Ph.D. student at NC State. The paper was co-authored by Ching-Chang Chung, a postdoctoral researcher at NC State.

North Carolina State University

Related Radiation Articles from Brightsurf:

Sheer protection from electromagnetic radiation
A printable ink that is both conductive and transparent can also block radio waves.

What membrane can do in dealing with radiation
USTC recently found that polymethylmethacrylate (PMMA) and polyvinyl chloride (PVC) can release acidic substance under γ radiation, whose amount is proportional to the radiation intensity.

First measurements of radiation levels on the moon
In the current issue (25 September) of the prestigious journal Science Advances, Chinese and German scientists report for the first time on time-resolved measurements of the radiation on the moon.

New biomaterial could shield against harmful radiation
Northwestern University researchers have synthesized a new form of melanin enriched with selenium.

A new way to monitor cancer radiation therapy doses
More than half of all cancer patients undergo radiation therapy and the dose is critical.

Nimotuzumab-cisplatin-radiation versus cisplatin-radiation in HPV negative oropharyngeal cancer
Oncotarget Volume 11, Issue 4: In this study, locally advanced head and neck cancer patients undergoing definitive chemoradiation were randomly allocated to weekly cisplatin - radiation {CRT arm} or nimotuzumab -weekly cisplatin -radiation {NCRT arm}.

Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.

Radiation breaks connections in the brain
One of the potentially life-altering side effects that patients experience after cranial radiotherapy for brain cancer is cognitive impairment.

Fragmenting ions and radiation sensitizers
The anti-cancer drug 5-fluorouracil (5FU) acts as a radiosensitizer: it is rapidly taken up into the DNA of cancer cells, making the cells more sensitive to radiotherapy.

'Seeing the light' behind radiation therapy
Delivering just the right dose of radiation for cancer patients is a delicate balance in their treatment regime.

Read More: Radiation News and Radiation Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to