Expansion, environmental impacts of irrigation by 2050 greatly underestimated

May 04, 2020

The amount of farmland around the world that will need to be irrigated in order to feed an estimated global population of 9 billion people by 2050 could be up to several billion acres, far higher than scientists currently project, according to new research. The result would be a far greater strain on aquifers, as well as the likely expansion of agriculture into natural ecosystems as farmers search for water.

Existing irrigation models -- which are widely used to define policies on water and food security, environmental sustainability, and climate change -- suggest that the amount of agricultural land requiring irrigation could extend between 240 million and 450 million hectares (590 million to 1.1 billion acres) during the next 30 years.

But those projections likely underestimate population growth and too confidently assume how much land and water will be available for agriculture without having to find new sources, according to researchers from Princeton University, the University of Reading in the United Kingdom, and the University of Bergen in Norway.

The amount of irrigated land could in fact increase to as high as 1.8 billion hectares (4.4 billion acres), the study authors reported in the journal Geophysical Research Letters, writing, "Policymakers should acknowledge that irrigated areas can grow much more than previously thought in order to avoid underestimating potential environmental costs."

First author Arnald Puy, a postdoctoral researcher in ecology and evolutionary biology at Princeton, said that an expansion of irrigation of this magnitude would have dramatic effects on the environment and other sectors of society. Puy, who is affiliated with the Center for BioComplexity administered by the Princeton Environmental Institute (PEI), worked with co-authors Samuele Lo Piano of the University of Reading and Andrea Saltelli of the University of Bergen.

Irrigation is currently responsible for about 70% of freshwater withdrawals worldwide. About 90% of water taken for residential and industrial uses eventually returns to the aquifer, but only about one-half of the water used for irrigation is reusable. Evaporation, evapotranspiration from plants, and delivery losses such as from leaky pipes forever remove the rest from the water cycle.

"Much larger irrigated areas might mean extending agricultural land toward new ecosystems or non-cultivated areas with the consequent loss of biodiversity, which might also be larger than expected," Puy said. "At the same time, needing more water for irrigation means less water for other sectors and therefore more stress on water resources than expected."

There also could be a much higher amplification of climate change, which current climate models do not account for, Puy said. Previous research has shown that irrigation may influence climate by altering surface temperatures and the amount of water vapor in the atmosphere, both of which are critical components of climate modeling. These factors have an impact on cloud formation and the amount of solar radiation that is either contained within the atmosphere or reflected back into space.

The climate effects of irrigation also include greenhouse gases released through producing and operating irrigation machinery. The most common modern equipment consists of center-pivot systems consisting of wheeled tubes outfitted with spray guns or dripping faucet heads that rotate around a central water source.

"Much larger irrigated areas means that predictions of agricultural gas emissions might also be much lower than they will be in reality," Puy said "More irrigated areas means investing on irrigation machinery and energy consumption, leading to the consumption of fossil-energy reservoirs and the release of CO2."

Finally, irrigated agriculture also increases soil total nitrogen and carbon due to the addition of fertilizers and manure. Nitrate leaching can taint groundwater and ammonia can be volatilized from fertilizers, limiting the availability of potable water, Puy said.

By drawing attention to the underestimation of irrigated land by current models, Puy, Lo Piano and Saltelli hoped to increase the accuracy of all studies that rely on those estimates to project how the climate and environment could be affected by the very real challenge of feeding everyone on Earth -- and how the state of the environment could shape the outcome of that effort.
The paper, "Current models underestimate future irrigated areas," was published in the April 28 edition of Geophysical Research Letters. The work was supported by a Marie Sk?odowska-Curie Global Fellowship (grant no. 792178) from the European Commission.

Princeton University

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.