Different kinds of white fat are important in disease

May 04, 2020

BOSTON - (May 1, 2020) - Excess white fat causes obesity, which in turn can drive diabetes and many other metabolic diseases that are growing at epidemic rates around the world. But all white fat is not born equal. For instance, "intra-abdominal" fat, i.e. fat within the belly, is known to carry higher risks of disease than "subcutaneous" fat that sits under the skin and often accumulates in the hips and thighs. Researchers from Joslin Diabetes Center and Boston University now have discovered different types of white fat cells, even within a single site, that may play distinct roles in disease.

"A central question in our research on metabolic disease is whether white fat cells in different parts of the body, and even within a single part of the body, are different enough that some might predispose you to disease and some might not," says C. Ronald Kahn, MD, Joslin's Chief Academic Officer and Head of the Section on Integrative Physiology and Metabolism. "If so, determining the mechanisms for these differences could lead to development of novel therapies for diabetes, obesity and related conditions."

Earlier studies had identified several types of white fat cells in mice, but this is one of the first to discover multiple types in humans, says Kahn, who is co-senior author on a Nature Communications paper presenting the work and professor at Harvard Medical School.

Within fat tissue, fat cells evolve from "preadipocytes" or precursor cells to mature cells. As they do, their patterns of gene expression change. A technique called single-cell RNA sequencing examines these expression patterns on a cell-by-cell basis, offering an extremely detailed look at how the patterns vary between cells.

The collaboration between Joslin and Boston University began with two sets of single-cell RNA sequencing data on human subcutaneous white fat preadipocytes that progressed into mature stages in culture. Gathered from healthy humans, one data set was collected by scientists at the Broad Institute of Harvard and MIT and the other by the lab of Joslin's Yu-Hua Tseng, PhD.

Simon Kasif, PhD, Boston University professor of biomedical engineering and co-senior author on the paper, then led an integrated analysis of both data sets with a novel mathematical approach to understanding the patterns of gene expression in these cells.

The analysis identified two subtypes of human white subcutaneous fat that displayed quite distinct patterns of gene expression. Among the distinctions, one subtype showed patterns indicating much higher intake of glucose, a crucial resource in metabolism.

Additionally, the investigators found that "zinc nuclear finger" genes, a group of master regulator genes whose function in fat cells is not well understood, were expressed at much higher levels in one class of preadipocytes. This expression may help to control whether the cells become mature fat cells, the scientists suggested.

"We think this research is the tip of the iceberg--if we study more samples of human fat, we will find more subtypes," says Kahn. It would be very helpful, for instance, to examine samples of intra-abdominal fat and fat from people with various metabolic conditions. Broadening the research into white fat cell types would aid in connecting various patterns of obesity with the risks and mechanisms of metabolic disease, he says.

"Body fat is linked to many different conditions beyond diabetes," Kahn emphasizes. "This research could be important for understanding the risk factors for other metabolic diseases such as fatty liver disease and atherosclerosis, and even non-metabolic diseases that are increased by obesity, such as cancer and Alzheimer's disease."

"The study highlights the potential of bringing interdisciplinary expertise from four laboratories to integrate biology, artificial intelligence, systems biology and data obtained from clinical samples to catalyze discovery," says Kasif.

"Metabolic diseases are highly associated with environmental factors," Kasif adds. "This work supports the relatively understudied hypothesis that environmental factors may modify the trajectory of how cells develop and our understanding of how this process may influence biology and metabolic disease."
-end-
Alfred Ramirez, then a graduate student at Boston University, was first author on the paper. Other contributors included Weikang Cai, Ruidan Xue and Yu-Hua Tseng from Joslin; Bashir Rastegarpanah and Mark Crovella from Boston University; and Simon Dankel from the University of Bergen in Norway. Lead funding for the work came from the National Institutes of Health and the National Science Foundation.

About Joslin Diabetes Center

Joslin Diabetes Center is world-renowned for its deep expertise in diabetes treatment and research. Joslin is dedicated to finding a cure for diabetes and ensuring that people with diabetes live long, healthy lives.  We develop and disseminate innovative patient therapies and scientific discoveries throughout the world. Joslin is an independent, non-profit institution affiliated with Harvard Medical School, and one of only 16 NIH-designated Diabetes Research Centers in the U.S.

For more information, visit http://www.joslin.org or follow @joslindiabetes | One Joslin Place, Boston, MA 617-309-2400

Joslin Diabetes Center

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.