Multiple flooding sources threaten Honolulu's infrastructure

May 04, 2020

Today and as sea level continues to rise in the future, extreme high tide events cause Honolulu, Hawai'i's primary urban center to experience flooding not just from water washing directly over the shoreline, but also from groundwater inundation as the water table is pushed toward the surface, and reverse flow through the municipal drainage system. In a study published in Scientific Reports, researchers at the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology, found in the next few decades, sea level rise will likely cause large and increasing percentages of land area to be impacted simultaneously by the three flood mechanisms.

Further, they found that groundwater inundation represents the most extensive flood source, while direct marine inundation represents the least extensive--only three percent of the predicted flooding. 

"This is significant because many people think that sea level rise can be mitigated by seawalls," said Shellie Habel, lead author of the study and coastal geologist and extension agent with the University of Hawai'i Sea Grant College Program and UH Coastal Geology Group. "But a seawall will not stop groundwater inundation. Our results highlight the need to readjust our thinking regarding the flooding that accompanies sea level rise. We want to be sure to implement flood management strategies that will be effective at mitigating flooding."

This requires that all types of flooding be thoroughly assessed.

Identifying vulnerable locations, infrastructure

Habel and co-authors developed a method that identified the various flood types and their extent. Flood maps were produced by simulating flood locations and depths generated by each of the three mechanisms and by overlapping the simulations to identify areas vulnerable to combined flooding over the coming decades.

Colleagues at the UH Sea Level Center then developed a statistical model that considers predicted tide and projected magnitudes of local sea level rise to establish the frequency with which flooding is likely to occur in given locations.  

With these flood simulations, the research team assessed critical infrastructure that is likely to fail and cause direct impacts, such as dangerous or impassable roadways, storm drainage inlets likely to fail or act as pathways for additional flooding, and non-functional or flooded cesspools.

The impacts were found to be widespread among Honolulu's heavily densified primary urban center.

Planning for the future

"Because each type of flooding infiltrates through unique pathways, they will require unique engineering strategies to manage," said Habel. "The design of flood management strategies required to mitigate these impacts necessitate site-specific consideration of each mechanism to avoid being ineffective."

In partnership with the Honolulu Board of Water Supply, the University of Hawai'i, Hawai'i Sea Grant, and other stakeholders, the authors plan to develop a real-time coastal groundwater monitoring network. Data collected through the monitoring network will help improve the capabilities of the modeling such as the ability to incorporate the effects of extreme rainfall. The network would also provide information that could inform the development of short, mid and long-term flood management strategies.
-end-


University of Hawaii at Manoa

Related Sea Level Rise Articles from Brightsurf:

Sea-level rise will have complex consequences
Rising sea levels will affect coasts and human societies in complex and unpredictable ways, according to a new study that examined 12,000 years in which a large island became a cluster of smaller ones.

UM researcher proposes sea-level rise global observing system
University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science researcher Shane Elipot proposes a new approach to monitoring global sea-level rise.

Sea-level rise projections can improve with state-of-the-art model
Projections of potentially dramatic sea-level rise from ice-sheet melting in Antarctica have been wide-ranging, but a Rutgers-led team has created a model that enables improved projections and could help better address climate change threats.

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

Sea-level rise could make rivers more likely to jump course
A new study shows that sea level rise will cause rivers to change course more frequently.

Sea level could rise by more than 1 meter by 2100 if emission targets are not met
An international study led by Nanyang Technological University, Singapore (NTU Singapore) scientists found that the global mean sea-level rise could exceed 1 meter by 2100 and 5 meters by 2300 if global targets on emissions are not achieved.

UCF study: Sea level rise impacts to Canaveral sea turtle nests will be substantial
The study examined loggerhead and green sea turtle nests to predict beach habitat loss at four national seashores by the year 2100.

Wetlands will keep up with sea level rise to offset climate change
Sediment accrual rates in coastal wetlands will outpace sea level rise, enabling wetlands to increase their capacity to sequester carbon, a study from the Marine Biological Laboratory, Woods Hole, shows.

Scientists discover evidence for past high-level sea rise
An international team of scientists, studying evidence preserved in speleothems in a coastal cave, illustrate that more than three million years ago -- a time in which the Earth was two to three degrees Celsius warmer than the pre-industrial era -- sea level was as much as 16 meters higher than the present day.

Corals in Singapore likely to survive sea-level rise: NUS study
Marine scientists from the National University of Singapore found that coral species in Singapore's sedimented and turbid waters are unlikely to be impacted by accelerating sea-level rise

Read More: Sea Level Rise News and Sea Level Rise Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.