Plankton may influence climate change says UCSB scientist

May 05, 2004

(Santa Barbara, Calif.) -- Plankton appear to play a major role in regulating the global climate system, according to new research.

David Siegel, professor of geography at the University of California, Santa Barbara, and director of the Institute for Computational Earth System Science, made the discovery with his former Ph.D. student Dierdre Toole, who is now based at Woods Hole Oceanographic Institute.

In an article in the May 6 issue of the journal Geophysical Research Letters, the scientists explain their research in the Sargasso Sea, approximately 50 miles southeast of the island of Bermuda. Siegel's research group has been making observations at this location since 1992.

Phytoplankton are tiny, single-celled floating plants. They inhabit the upper layers of any natural body of water where there is enough light to support photosynthetic growth. They are the base of the ocean's food web, and their production helps to regulate the global carbon cycle. They also contribute to the global cycling of many other compounds with climate implications.

One of these compounds is a volatile organic sulfur gas called dimethyl sulfide or DMS. Scientists had previously theorized that DMS is part of a climate feedback mechanism, but until now there had been no observational evidence illustrating how reduced sunlight actually leads to the decreased ocean production of DMS. This is the breakthrough in Toole and Siegel's research.

They describe how the cycle begins when the ocean gives off DMS to the lower atmosphere. In the air, DMS breaks down into a variety of sulfur compounds that act as cloud-condensing nuclei, leading to increased cloudiness. With more clouds, less sunlight reaches the Earth and the biological processes which produce DMS are reduced.

According to their research, it appears that phytoplankton produce organic sulfur compounds as a chemical defense from the damaging effects of ultraviolet radiation and other environmental stresses, in much the same way as our bodies use vitamins E and C to flush out molecules that cause cellular damage.

Siegel and Toole found that ultraviolet radiation explained almost 90 percent of the variability in the biological production of DMS. They showed that summertime DMS production is "enormous," and that the entire upper layer of DMS content is replaced in just a few days. This demonstrates a tight link between DMS and solar fluxes.

"The significance of this work is that it provides, for the first time, observational evidence showing that the DMS-anti-oxidant mechanism closes the DMS-climate feedback loop," said Siegel. "The implications are huge. Now we know that phytoplankton respond dramatically to UV radiation stresses, and that this response is incredibly rapid, literally just days."

He explained that the findings give new impetus for scientists to re-examine the DMS-climate feedback hypothesis. And the DMS-climate feedback may also play out under possible global warming and climate change scenarios.

As the Earth's ozone shield thins and greenhouse gases increase, higher ultraviolet radiation will reach the surface layer of the oceans. The findings indicate that phytoplankton will then produce more DMS in response to this increased ultraviolet radiation, causing increasing cloudiness and mitigating the effects of global warming. However, Siegel is careful to note that while the process may mitigate global warming it will not reverse the trend.

The project was funded by NASA. NASA's Earth Science Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather, and natural hazards using the unique vantage point of space.
-end-
(135)

Note: David Siegel can be reached at 805-893-4547 or by e-mail at davey@icess.ucsb.edu.

University of California - Santa Barbara

Related Global Warming Articles from Brightsurf:

The ocean has become more stratified with global warming
A new study found that the global ocean has become more layered and resistant to vertical mixing as warming from the surface creates increasing stratification.

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.

Global warming and extinction risk
How can fossils predict the consequences of climate change? A German research team from Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), the Museum of Natural History Berlin and the Alfred Wegener Institute compared data from fossil and marine organisms living today to predict which groups of animals are most at risk from climate change.

Intensified global monsoon extreme rainfall signals global warming -- A study
A new study reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America.

Global warming's impact on undernourishment
Global warming may increase undernutrition through the effects of heat exposure on people, according to a new study published this week in PLOS Medicine by Yuming Guo of Monash University, Australia, and colleagues.

Global warming will accelerate water cycle over global land monsoon regions
A new study provides a broader understanding on the redistribution of freshwater resources across the globe induced by future changes in the monsoon system.

Comparison of global climatologies confirms warming of the global ocean
A report describes the main features of the recently published World Ocean Experiment-Argo Global Hydrographic Climatology.

Six feet under, a new approach to global warming
A Washington State University researcher has found that one-fourth of the carbon held by soil is bound to minerals as far as six feet below the surface.

Can we limit global warming to 1.5 °C?
Efforts to combat climate change tend to focus on supply-side changes, such as shifting to renewable or cleaner energy.

Global warming: Worrying lessons from the past
56 million years ago, the Earth experienced an exceptional episode of global warming.

Read More: Global Warming News and Global Warming Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.