Theory shows mechanism behind delayed development of antibiotic resistance

May 05, 2009

Inhibiting the "drug efflux pumps" in bacteria, which function as their defence mechanisms against antibiotics, can mask the effect of mutations that have led to resistance in the form of low-affinity drug binding to target molecules in the cell. This is shown by researchers at Uppsala University in a new study that can provide clues to how the development of resistance to antibiotics in bacteria can be delayed.

The introduction of antibiotics as drugs in the treatment of bacterial infections in the post-WWII years was a revolutionized medicine, and dramatically improved the health condition on a global scale. Now, 60 years later, growing antibiotic resistance among pathogens has heavily depleted the arsenal of entailed effective antibiotic drugs.

Antibiotics function by attacking vital molecules in bacteria. Bacteria, in turn, protect themselves either by using "drug efflux pumps" for antibiotics or through mutations that reduce the binding of the antibiotic to its target molecules inside the bacteria cell. Through these changes, bacteria develop resistance to antibiotics.

The new study is published in the journal Proceedings of the National Academy of Sciences in the US. Professor Måns Ehrenberg's research team at Uppsala University has shown experimentally and theoretically explained how the inhibition of these drug efflux pumps can completely mask the resistance effect of mutations that reduce the affinity of antibiotics to their target molecules in the bacteria cell. The effect of the mutations is entirely hidden when the pumps are unable to remove the antibiotic sufficiently quickly in relation to the dilution of the antibiotic through cell growth and cell division.

"This masking effect can provide clues to how the development of resistance to antibiotics in bacteria can be delayed," says Måns Ehrenberg.

The study introduces a new tool for understanding and delaying the development of resistance in bacteria.
-end-


Uppsala University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.