Redesigned systems may increase access to MRI for patients with implanted medical devices

May 05, 2015

New technology developed at the Martinos Center for Biomedical Imaging at Massachusetts General Hospital (MGH) may extend the benefits of magnetic resonance imaging (MRI) to many patients whose access to MRI is currently limited. A redesign of the wire at the core of the leads that carry signals between implanted medical devices and their target structures significantly reduces the generation of heat that occurs when standard wires are exposed to the radiofrequency (RF) energy used in MRI. The novel system is described in a paper published in the online Nature journal Scientific Reports.

"Clinical electrical stimulation systems such as pacemakers and deep-brain stimulators are increasingly common therapies for patients with a large range of medical conditions, but a significant limitation of these devices is restricted compatibility with MRI," says Giorgio Bonmassar, PhD, of the Martinos Center, senior and corresponding author of the paper. "The tests performed on our prototype deep-brain stimulation lead indicate a three-fold reduction in heat generation, compared with a commercially available lead; and the use of such leads could significantly expand how many patients may safely access the benefits of MRI."

For many years the primary limitation to the use of MRI in patients with implanted devices was the risk that the powerful magnetic fields would dislodge devices containing ferromagnetic (attracted by magnetic fields) metals, but the devices now available avoid using those metals. However, the RF energy used in MRI can increase the electrical current induced in the nonmagnetic metallic wires at the center of presently available device leads, producing heat that can damage tissues at the site where a stimulating signal is delivered. Even though the FDA has authorized a group of "MR conditional" devices that can be used in some situations, those are limited to low-power scanners that cannot provide the information available from today's more powerful state-of-the-art MRI systems. It is estimated that around 300,000 patients worldwide are prevented from receiving MRI exams each year because of implanted devices.

The wires designed by the MGH/Martinos Center team use what is called resistive tapered stripline (RTS) technology that breaks up the RF-induced current increase by means of an abrupt change in the electrical conductivity of wires made from conductive polymers, a "cloaking" technique also used in some forms of stealth aircraft. After calculating the features required to produce an RTS lead that would minimize heat generation, the investigators designed and tested a deep-brain stimulation device with such a lead in a standard system used for MRI testing of medical implants - a gel model the size of an adult human head and torso. Compared with a commercially available lead, the RTS lead generated less than half the heat produced by exposure to a powerful MRI-RF field, a result well within current FDA limits.

Study co-author Emad Eskandar, MD, of the MGH Department of Neurosurgery notes that the ability to conduct MR exams on patients with deep-brain stimulation implants would significantly improve the critical process of ensuring that the signal is being delivered to the right area, something that is not possible with CT imaging. "For epilepsy patients and their providers, brain MRIs could provide much more accurate information about the sites where seizures originate and their relation to other brain structures, maximizing the effectiveness and improving the safety of implants that reduce or eliminate seizures. MR-compatible leads also would allow patients with brain implants to have MRIs of other parts of their body - knee, spine, breast - something that is currently prohibited," he says.

Bonmassar stresses that the team's RTS lead technology would be applicable to any type of active implant - including pacemakers, defibrillators and spinal cord stimulators. The research team is now pursuing an FDA Investigational Device Exemption that will allow clinical trials of devices with RTS leads. "The Obama administration's BRAIN initiative is sponsoring grant applications to study recording and/or stimulation devices to treat nervous system disorders and better understand the human brain," he says. "By pursuing these opportunities we hope that one day no patients will be denied access to state-of-the-art MRI examinations."
-end-
Bonmassar is an assistant professor of Radiology, and Eskandar is the Pappas Professor of Neurosciences at Harvard Medical School. The co-lead authors of the Scientific Reports paper are Peter Serano, University of Maryland, and Leonardo Angelone, PhD, U.S. Food and Drug Administration; Husam Katnani, PhD, MGH Neurology, is also a co-author. The study was supported by National Institute for Neurological Disorders and Stroke grant U01-NS075026, National Institute of Biomedical Imaging and Bioengineering grant 1R21EB016449-01A1, National Center for Research Resources grant P41-RR14075, and by the MIND Institute. Massachusetts General Hospital has filed a patent application for the technology described in this paper.

Massachusetts General Hospital , founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $760 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Massachusetts General Hospital

Related Magnetic Fields Articles from Brightsurf:

Physicists circumvent centuries-old theory to cancel magnetic fields
A team of scientists including two physicists at the University of Sussex has found a way to circumvent a 178-year old theory which means they can effectively cancel magnetic fields at a distance.

Magnetic fields on the moon are the remnant of an ancient core dynamo
An international simulation study by scientists from the US, Australia, and Germany, shows that alternative explanatory models such as asteroid impacts do not generate sufficiently large magnetic fields.

Modelling extreme magnetic fields and temperature variation on distant stars
New research is helping to explain one of the big questions that has perplexed astrophysicists for the past 30 years - what causes the changing brightness of distant stars called magnetars.

Could megatesla magnetic fields be realized on Earth?
A team of researchers led by Osaka University discovered a novel mechanism called a ''microtube implosion,'' demonstrating the generation of megatesla-order magnetic fields, which is three orders of magnitude higher than those ever experimentally achieved.

Superconductors are super resilient to magnetic fields
A Professor at the University of Tsukuba provides a new theoretical mechanism that explains the ability of superconductive materials to bounce back from being exposed to a magnetic field.

A tiny instrument to measure the faintest magnetic fields
Physicists at the University of Basel have developed a minuscule instrument able to detect extremely faint magnetic fields.

Graphene sensors find subtleties in magnetic fields
Cornell researchers used an ultrathin graphene ''sandwich'' to create a tiny magnetic field sensor that can operate over a greater temperature range than previous sensors, while also detecting miniscule changes in magnetic fields that might otherwise get lost within a larger magnetic background.

Twisting magnetic fields for extreme plasma compression
A new spin on the magnetic compression of plasmas could improve materials science, nuclear fusion research, X-ray generation and laboratory astrophysics, research led by the University of Michigan suggests.

How magnetic fields and 3D printers will create the pills of tomorrow
Doctors could soon be administering an entire course of treatment for life-threatening conditions with a 3D printed capsule controlled by magnetic fields thanks to advances made by University of Sussex researchers.

Researchers develop ultra-sensitive device for detecting magnetic fields
The new magnetic sensor is inexpensive to make, works on minimal power and is 20 times more sensitive than many traditional sensors.

Read More: Magnetic Fields News and Magnetic Fields Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.