Nav: Home

Genetic variants in patients with crohn's disease prevent 'good' gut bacteria from working

May 05, 2016

Los Angeles (May 5, 2016) -- A major type of inflammatory bowel disease (IBD) may be caused in part by genetic variants that prevent beneficial bacteria in the gut from doing their job, according to a new study published today in the journal Science.

The multicenter study from several research institutions, including Cedars-Sinai, uncovered the protective role some bacteria can play in disease management.

"Bacteria historically have been regarded as an enemy of the body, but more recently we have been identifying bacterial types that seem to be beneficial to health, especially in the case of IBD," said Dermot McGovern, MD, PhD, FRCP(LON), director of Translational Medicine in the Cedars-Sinai F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute. McGovern was a co-author of the Science article.

Investigators found that the beneficial effects of Bacteroides fragilis bacterium, one of billions of microscopic organisms that normally inhabit the human gastrointestinal system, were negatively impacted by variations in the ATG16L1 gene.

These genetic variations increase the risk of developing Crohn's disease, one of the two common forms of IBD. As a result, the bacteria were prevented from carrying out one of their critical functions: suppressing inflammation of the intestinal lining.

"This study is very important because it identifies a completely novel mechanism through which these genes may lead to an increased risk of developing Crohn's disease," said McGovern, director of the Precision Medicine Initiative at Cedars-Sinai.

IBD is a difficult disease to treat and affects more than 1.6 million people in the U.S.

Using mouse models and human specimens, this study focused on Crohn's disease. Patients with this condition suffer from inflammation of the gastrointestinal tract, often resulting in severe abdominal pain and weight loss as well as symptoms outside the gut, including arthritis.

"Given the low percentage of IBD patients who respond to drugs directed at the immune system, these results could point the way to improving treatment by identifying patients who might best respond to manipulation of bacteria in their digestive tract," said study co-author Stephan R. Targan, MD, director of the F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute.

The findings have implications for treating Crohn's disease as well as other immune disorders that share similar genetic variations.

"This study significantly advances the knowledge base for physicians treating patients with Crohn's disease. It also exemplifies the multidisciplinary endeavors under way at Cedars-Sinai to translate basic science discoveries to meaningful help for patients enduring the various challenges of inflammatory bowel disease," said Shlomo Melmed, MB, ChB executive vice president, Academic Affairs, and dean of the medical faculty at Cedars-Sinai.

Current therapies for IBD patients lead to remission in only about 30 percent of cases. Cedars-Sinai is at the forefront of research to pinpoint the role of genetics in the health of the digestive tract. This work is a critical step in developing specific therapies that can provide more effective and individualized treatments for patients.
-end-
No conflict of interest reported by Cedars-Sinai researchers.

Research at Cedars-Sinai that contributed to this study is supported by U.S. Department of Health and Human Services under award numbers AI067068, DE023789-01, DK062413 and PO1DK046763, and the Cedars-Sinai F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute. Project investigators are supported by the Leona M. and Harry B. Helmsley Charitable Trust, the European Union, the Crohn's and Colitis Foundation of America, the Feintech Family Chair in Inflammatory Bowel Disease and the Joshua L. and Lisa Z. Greer Chair in Inflammatory Bowel Disease Genetics.

Cedars-Sinai Medical Center

Related Bacteria Articles:

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
More Bacteria News and Bacteria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.