Nav: Home

Split-second imaging reveals molecular changes involved in vision

May 05, 2016

Every process that sustains life is carried out by proteins.

But understanding how these complex molecules do their jobs depends on learning the arrangement of their atoms -- and how the structure changes -- as they interact. No effective method for observing molecular movement with such detail and speed had been available, until now.

In a groundbreaking experiment with the world's fastest camera, a team of physicists -- led by the University of Wisconsin-Milwaukee -- documented the fundamental processes of a chemical reaction unfolding in real time. They captured images of a tiny crystalized protein as it reacted to light in increments that occur in a few quadrillionths of a second.

"This puts us dramatically closer to understanding the chemistry necessary for all life," said Marius Schmidt, a UWM physics professor who led the experiment. "Discovering the step-by-step process of how proteins function is necessary not only to inform treatment of disease, but also to shed light on the grand questions of biology."

The experiment, which took place at the SLAC National Accelerator Laboratory, is the subject of a paper published online May 5, 2016 in Science magazine.

Unveiling the atomic changes in protein molecules as they accomplish tasks is important because structure determines their function. UWM has been at the forefront of an international effort of 11 institutions to unmask those structural dynamics.

"Light drives much of biology and this novel experiment is a pinnacle in understanding how living systems respond to light," said team member Keith Moffat, a University of Chicago professor who pioneered this experimental approach and, with his Chicago colleagues, developed it over 25 years.

Other members of the experiment's scientific team included Lawrence Livermore National Laboratory; the Duetsches Elektronen Synchrotron (DESY); Imperial College, London; Arizona State University; the University of Jyvaskyla; State University of New York, Buffalo; Max Planck Institute for Structure and Dynamics of Matter; and the University of Hamburg.

A movie of molecules

A protein is far smaller than a single cell. For example, about 3,000 different proteins operate in the common bacterium E. coli.

Using the Linac Coherent Light Source -- the XFEL at SLAC -- the scientists mapped a protein's atoms in motion as the chemical bonds of a central dye molecule, which was buried within the protein and made it yellow, rearranged.

For the first time, the structure of the yellow dye within the protein was captured in an electronically excited state.

This excited-state dynamic is fundamental to light perception in all living organisms, including bacteria and plants. Crucial parts of photosynthesis are driven by similar excitations.

"Once the protein absorbs a photon of light, it changes its shape from an initial configuration, known as the 'trans' form, to a new shape, known as 'cis,'" said team member Petra Fromme, director of the Biodesign Center for Applied Structural Discovery at Arizona State University. "The transition occurs in such a unbelievably brief time span that nobody had been able to see the important details of this process - until our discovery."

At the speed of life

For the past 60 years, the only way to examine proteins in three dimensions was with X-ray crystallography. It involves shooting X-rays at crystallized proteins, which diffract the X-rays and create patterns of dots the way shaking a paintbrush sprays drops on a wall.

The pattern provides a fingerprint for that protein. The millions of data points can be mathematically reconstructed to form a 3-D image of the protein's molecular structure at a single point in time - a still snapshot.

To capture protein molecules in action, however, scientists need both an optical laser and an X-ray laser with split-second pulses. With about 25 trillion pictures per second, the Linac Coherent Light Source offered an ultra-slow-motion video of extremely rapid events.

Next, the researchers will work on getting femtosecond details over a bigger slice of time to get more action into the "movie." This could ultimately allow scientists to intervene in the process of protein function by using light.

"We're interested in the mechanism of the chemical reaction, with the goal of controlling and steering it in a certain direction with light," Schmidt said. "We can shape laser pulses for that purpose. We will discover how the molecules march in synchrony during such processes."

University of Wisconsin - Milwaukee

Related Proteins Articles:

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.
New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at