Nav: Home

How photosynthetic cells deal with a lack of iron

May 05, 2017

International researchers working in collaboration with Professor Wolfgang R. Hess and Dr. Jens Georg, both from the University of Freiburg's Faculty of Biology, have discovered a small RNA molecule that plays a key role in how cyanobacteria adjust their metabolism to the amount of iron available in the environment. Oxygenic photosynthesis - in which plants, algae and cyanobacteria generate oxygen and harvest solar energy for the synthesis of organic matter - is a process that depends on iron. When only low amounts of iron are available, cyanobacteria are able to reduce their photosynthetic activity by using what the researchers are calling IsaR1, which stands for "iron stress activated RNA 1." The team of researchers have published their findings in the latest issue of Current Biology.

As a result of their dependence on iron, oxygen-producing photosynthetic cells face a twofold dilemma. On the one hand, ferric iron (Fe3+) and oxygen tend to react with each other and form a type of rust that is typically insoluble in an oxygen-rich environment, meaning that the resulting iron compound cannot be used for metabolism. On the other hand, ferrous iron (Fe2+) can lead to the creation of dangerous free radicals by reacting with molecules that are present in every living cell. Iron is therefore an essential but potentially dangerous element, and cells must constantly regulate its status and concentration.

Scientists have known for a long time that many bacteria keep their iron levels stable with the help of a transcription factor called Fur, which stands for "ferric uptake regulator." When sufficient amounts of iron are present, Fur binds it. This enables Fur to act as a repressor, meaning it is inhibitory for the expression of certain genes. If iron starvation occurs, then Fur loses the bound iron atom, enabling the bacteria to produce certain proteins that, for example, ensure the uptake of iron.

When not enough iron is available, the bacteria also have to inhibit the expression of other genes, so that they can stop the production of proteins that are particularly iron-rich and are not absolutely necessary for survival in unfavorable conditions. This is especially true regarding the apparatus for oxygenic photosynthesis, which is the most iron-rich supramolecular structure in the cell. The transcription of the information contained in the DNA involves regulatory RNAs. One of these RNA molecules is IsaR1. When iron is low, IsaR1 affects the photosynthetic apparatus of cyanobacteria in three different ways. First, IsaR1 inhibits the expression of multiple proteins that are important for photosynthesis. Second, IsaR1 interferes with the biochemical pathway leading to the production of the green photosynthetic pigment chlorophyll, which is needed in smaller quantities when iron is scarce. Third, IsaR1 works against the expression of proteins for iron-sulfur clusters, which are also important in photosynthesis.

What is also remarkable is that IsaR1 consists of only 68 nucleotides, as compared to the genes of regulatory proteins, which often need thousands of these building blocks. "Discovering that such a short RNA molecule controls such a major acclimation response in metabolism and thus affects the photosynthetic machinery on three different levels was a great surprise," said Wolfgang Hess. The team's findings not only provide insight into a previously unknown acclimation strategy of photosynthetic cyanobacteria; they also enable researchers to draw key conclusions about the regulation of photosynthetic processes in all "green" organisms, including plants and algae.
-end-
Background: Cyanobacteria

Microfossils called stromatolites found in Australia have shown that photosynthesizing cyanobacteria are some of the oldest forms of life on Earth. Similar cells even existed already more than three billion years ago. Their photosynthetic activity released oxygen into the atmosphere, where it accumulated over the millennia and ultimately enabled the evolution of animals and humans. Cyanobacteria, especially those in the ocean, continue to play an important role in environmental cycles today.

Publication:


Jens Georg, Gergana Kostova, Linda Vuorijoki, Verena Schön, Taro Kadowaki, Tuomas Huokko, Desirée Baumgartner, Maximilian Müller, Stephan Klähn, Yagut Allahverdiyeva, Yukako Hihara, Matthias E. Futschik, Eva-Mari Aro, Wolfgang R. Hess: Acclimation of Oxygenic Photosynthesis to Iron Starvation Is Controlled by the sRNA IsaR1. Current Biology, DOI 10.1016/j.cub.2017.04.010

Caption:


Microfossils found in stromatolites are proof that photosynthetic cyanobacteria are some of the oldest life forms on earth. This stromatolite from Crete, Greece, is from the Triassic period and is roughly 230 million years old.

Photo: Sandra Meyndt

Source: Geo- and Paleontological Collection, Institute of Earth and Environmental Sciences

Contact:

University of Freiburg

Genetics & Experimental Bioinformatics, Faculty of Biology Genetics & Experimental Bioinformatics, Faculty of Biology

University of Freiburg

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.