Nav: Home

Immune cells derived from specialised progenitors

May 05, 2017

Dendritic cells are gatekeepers of Immunity and are crucial for the detection and initiation of Immunity against pathogens and foreign substances. Up to now dendritic cell subtypes were thought to develop from one common progenitor. Now, in a joint effort, researchers from A*STAR Singapore Immunology Network, LIMES-Institute and cluster of excellence ImmunoSensation from University of Bonn and the German Center for Neurodegenerative Diseases were able to show with single cell resolution that this important component of the human immune system develops from specialized progenitors. These findings are now published in Science and have implications for the development and optimization of vaccines.

"Our blood is more than just red blood cells, which are important for oxygen transport", Dr. Andreas Schlitzer of the University of Bonn states. "It's full of a variety of Immune cells which are crucial for the defence against pathogens such as bacteria or viruses". Researchers have been dissecting the blood immune cell compartment for a long time. Human dendritic cells in the blood are an important interface between the innate and the adaptive branch of the immune system. Thereby these results constitute an important step in understanding the role of this immune cell subtype during the regulation of human immune responses.

How are these processes regulated?

"Up to know assessing the transcriptional regulation of single human dendritic cells was extremely difficult", Dr. Schlitzer reports. However now the research teams from Singapore and the University of Bonn were able to analyse these processes with a combination of single cell transcriptomics, Mass Cytometry and sophisticated high-dimensional flow cytometry, which allowed unprecedented detail to fully understand the development of these immune cells.

The research team, led by Dr Florent Ginhoux from A*STAR's Singapore Immunology Network (SigN) in collaboration with Prof. Dr. Joachim Schultze, Dr. Andreas Schlitzer and Dr. Marc Beyer from the Life & Medical Sciences Institute (LIMES) of the University of Bonn and the German Center for Neurodegenerative Diseases were now able to analyse the regulation of human dendritic cell development and functional specialization with single cell resolution in the human blood and bone marrow.

Mapping the complete developmental cycle of human dendritic cells

During the analysis of the complete developmental cycle of these dendritic cells the researcher made a remarkable finding. Previously it was thought that dendritic cell subtypes derive from one common progenitor, however this dogma has been overthrown by these recent data. Here, the researchers could show that dendritic cells, rather than developing from one common progenitor, are developing from subtype specialised progenitors which find their subtype identity already very early during their development in the human bone marrow.

These findings provide the basis for a better and more detailed understanding of the regulation of human immune response and are important for the development of new and more effective vaccinations against e.g. infectious diseases.
Publication: Mapping the human DC lineage through the integration of high-dimensional techniques, Science, DOI: 10.1126/science.aag3009


Dr. Andreas Schlitzer
University of Bonn
Tel. +49-228-7362847

PD Dr. Marc Beyer
University of Bonn
German Center for Neurodegenerative Diseases (DZNE)
Tel. +49-228-43302565

Prof. Dr. Joachim Schultze
University of Bonn
German Center for Neurodegenerative Diseasses (DZNE)
Tel. +49-228-7362787

University of Bonn

Related Immune System Articles:

Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
More Immune System News and Immune System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...