Nav: Home

Researchers discover a potential new target for cancer treatment

May 05, 2017

Dr. Florian Weinberg, from Prof. Dr. Tilman Brummer's research group at the Institute of Molecular Medicine and Cell Research (IMMZ) of the University of Freiburg, joined forces with scientists from the Departments of Clinical Pathology and Medicine I of the University Medical Centre Freiburg and the Kinghorn Cancer Centre/Garvan Insitute in Australia in an international team that has identified a new target for cancer therapy. The researchers discovered that the enzyme RIOK1 collaborates with the RAS protein, which is often mutated in tumors and therefore promotes tumor growth and the development of metastases. These secondary tumors are spread by the primary tumor, if it is not removed in time, and are the cause of death in most cancer patients. The researchers believe it may be possible to use so-called inhibitors to block the enzymatic activity of RIOK1, thereby slowing down the disease's progression. The team has recently published its findings in the translational journal EBioMedicine.

Cancer diseases are characterized by gene mutations that cause the uncontrolled growth of the body's own cells. This, in turn, results in the development of tumors. Most treatments combine surgery to remove the tumor with chemotherapy or radiation therapy, both of which are used to inhibit the fast growth of cells. Specific inhibitors can also be used as an additional or alternative therapy. These drugs inhibit the activity of the harmful proteins and enzymes produced by the mutated genes in tumors. However, there are currently only very few ways to specifically treat RAS-driven tumors. Because roughly 30 percent of all cancer patients carry a Ras mutation in their tumors, there is a very strong need to find new ways to target RAS.

The team of scientists studied the growth behavior of human RAS-mutated lung-, breast-, and colorectal cancer cells in cell culture and animal models. In each case, they were able to genetically modify the cells, so that they were no longer able to produce RIOK1, a method that mimics the effects of a still to be developed RIOK1 inhibitor. By this approach, the authors were able to reduce the growth and aggressiveness of the cancer cells. Especially in the animal models, the researchers observed that the modified cells were no longer able to form metastases. RIOK1 belongs to the enzyme family of protein kinases for which inhibitors are already successfully used in cancer therapy. Therefore, the scientists believe that similar substances inhibiting the enzymatic activity of RIOK1 could be developed in the near future. In addition, RIOK1 could be used to predict the progression of lung and breast cancer more accurately, as the researchers observed an increased production of RIOK1 in the tumor tissue of patients who had a poorer prognosis.

The researchers stated that more studies are needed to confirm RIOK1 as a target for cancer therapy, however. It would be important, for example, to understand the exact mechanism through which the enzyme supports cancer growth and metastasis. It is also essential that inhibitors be tested first on model organisms before the drugs can be tested in clinical studies. The researchers' initial studies on roundworms and human cells have demonstrated that healthy body cells are either only partially affected or not affected at all by the loss of RIOK1, because they do not depend on the enzyme. This would mean that, at the same time, cancer cells would be inhibited from growing and from spreading new tumors.
-end-
The study was funded by the Cluster of Excellence BIOSS Centre for Biological Signalling Studies and the Collaborative Research Center 850 "Control of Cell Motility in Morphogenesis, Cancer Invasion and Metastasis" at the University of Freiburg.

Caption:

Depicted are lung cancer cells stained for the cytoskeleton (colored in green) and the nuclei (colored in blue). A new therapeutic method may be able to reduce the growth and aggressiveness of these cells.

Source: Florian Weinberg

Original Publication:

The Atypical Kinase RIOK1 Promotes Tumor Growth and Invasive Behavior.

Florian Weinberg, Nadine Reischmann, Lisa Fauth, Sanaz Taromi, Justin Mastroianni, Martin Köhler, Sebastian Halbach, Andrea C. Becker, Niantao Deng, Tatjana Schmitz, Franziska Maria Uhl, Nicola Herbener, Bianca Riedel, Fabian Beier, Alexander Swarbrick, Silke Lassmann, Jörn Dengjel, Robert Zeiser, Tilman Brummer

DOI: http://dx.doi.org/10.1016/j.ebiom.2017.04.015

Contact:

Institute of Molecular Medicine and Cell Research University of Freiburg

University of Freiburg

Related Cancer Cells Articles:

New liver cancer research targets non-cancer cells to blunt tumor growth
'Senotherapy,' a treatment that uses small molecule drugs to target ''senescent'' cells, or those cells that no longer undergo cell division, blunts liver tumor progression in animal models according to new research from a team led by Celeste Simon, PhD, a professor of Cell and Developmental Biology in the Perelman School of Medicine at the University of Pennsylvania and scientific director of the Abramson Family Cancer Research Institute.
Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.
First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.
Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.
Plant-derived SVC112 hits cancer stem cells, leaves healthy cells alone
Study shows Colorado drug SVC112 stops production of proteins that cancer stem cells need to survive and grow.
Changes in the metabolism of normal cells promotes the metastasis of ovarian cancer cells
A systematic examination of the tumor and the tissue surrounding it -- particularly normal cells in that tissue, called fibroblasts -- has revealed a new treatment target that could potentially prevent the rapid dissemination and poor prognosis associated with high-grade serous carcinoma (HGSC), a tumor type that primarily originates in the fallopian tubes or ovaries and spreads throughout the abdominal cavity.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.
Conversion of breast cancer cells into fat cells impedes the formation of metastases
An innovative combination therapy can force malignant breast cancer cells to turn into fat cells.
More Cancer Cells News and Cancer Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.