Nav: Home

Extreme Ultraviolet imaging displays potential to enhance study of Alzheimer's disease

May 05, 2020

Scientists have published highly-detailed images of lab-grown neurons using Extreme Ultraviolet radiation that could aid the analysis of neurodegenerative diseases.

The international study, led by the University of Southampton's Dr Bill Brocklesby and Professor Jeremy Frey, used coherent Extreme Ultraviolet (EUV) light from an ultrafast laser to create images of the samples by collecting scattered light, without the need for a lens.

The technique produced extraordinary detail compared to traditional light microscope images, raising the possibility of potential applications in medicine including the study of Alzheimer's disease.

Researchers have published their findings in Science Advances.

The team performed the work at Southampton and at the Artemis facility in the Rutherford Appleton Laboratory, Harwell. The small-scale demonstration reveals that extra detail can be sampled without large, expensive facilities such as synchrotrons and free electron lasers.

Dr Bill Brocklesby, of the Zepler Institute for Photonics and Nanoelectronics, says: "The ability to take detailed images of delicate biological structures like neurons without causing damage is very exciting, and to do it in the lab without using synchrotrons or other national facilities is a real innovation.

"Our way of imaging fills an important niche between imaging with light, which doesn't provide the fine details we see, and things like electron microscopy, which require cryogenic cooling and careful sample preparation."

The collaborative research combined Southampton expertise with Dr Richard Chapman and his team at the Central Laser Facility, and research partners from Germany and Italy.

The EUV imaging technique processes multiple scatter patterns from a sample using a computer algorithm. The project compared EUV images of lab-grown neurons originating from mice with traditional light microscope images, revealing its much finer details. Unlike hard x-ray microscopy, no damage was observed of the delicate neuron structure.

Professor Jeremy Frey, Head of Computational Systems Chemistry, says: "It has been a long and sustained effort but highly rewarding. In April 2003, we started a journey with the award of an Engineering and Physical Sciences Research Council Basic Technology grant for New Technology for nanoscale X-ray sources: Towards single isolated molecule scattering.

"Some 17 years later, almost to the day, our paper in Science Advances demonstrates that the effort was well worth the hard work of our interdisciplinary team, obtaining the first ultra-high resolution images of a real biological sample using coherent soft-x-ray microscopy (ptyography). We are looking forward to applying our microscope to many biological, chemical and material problems.

"We continue to pursue even higher resolution with the ultimate aim of singe molecule imaging, a goal that now seems very much in view."

EUV microscopy provides many advantages over optical, hard x-ray or electron-based techniques, however traditional EUV sources and optics have until now required large associated scale and cost.

This new approach has focused on nonlinear optical techniques and, in particular, from high harmonic generation (HHG) using intense femtosecond lasers. Following these results, the Artemis team in Oxford is working towards being able to offer regular access to this technique in the future.

The combination of tomographic imaging techniques with these latest advances in laser technologies and coherent EUV sources also has the potential for high-resolution biological imaging in 3D.
-end-
Notes to Editors

The paper "Quantitative and correlative extreme ultraviolet coherent imaging of mouse hippocampal neurons at high resolution." has been published in Science Advances with DOI 10.1126/sciadv.aaz3025

For further information and interview requests, please contact Steve Bates, Media Relations Officer, University of Southampton. s.d.bates@southampton.ac.uk; 07342 060429

The University of Southampton drives original thinking, turns knowledge into action and impact, and creates solutions to the world's challenges. We are among the top 100 institutions globally (QS World University Rankings 2019). Our academics are leaders in their fields, forging links with high-profile international businesses and organisations, and inspiring a 24,000-strong community of exceptional students, from over 135 countries worldwide. Through our high-quality education, the University helps students on a journey of discovery to realise their potential and join our global network of over 200,000 alumni. http://www.southampton.ac.uk

University of Southampton

Related Neurons Articles:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.
Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.
A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.
Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.
Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.
Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.
The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.