Nav: Home

A hydrological model leads to advances in the creation of a world water map

May 05, 2020

Water is a global resource which is essential for life on our planet, thus hydrological research and the study of its management has also become crucial work for the continuity of life on Earth. The availability of public data on water behavior such as data about river flow and rainfall are key for the research community in order to create a world water map. When drawing this map, the public and people who manage water resources on local scales also play important roles. By means of carrying out citizen science, they provide and verify data.

The research community works on this task with hydrological models, which are tools that enable them to represent processes in the hydrological cycle, and are able to obtain, for example, predictions about river flow using primarily rainfall data (though also other atmospheric variables such as temperature, solar radiation, land features and plant development can be used). These tools usually use a hydrological basin as a unit of measurement, with a basin being a unit of land whose water flows toward the same point.

Researcher Rafael Pimentel from the Fluvial Dynamics and Hydrology research group at the University of Cordoba, worked for two years at the Hydrology Unit of the Swedish Meteorological and Hydrological Institute (SMHI) where he participated in shaping the first global model on a basin scale. The model used was HYPE, a model designed in said unit for comprehensive water management in Sweden and previously used on a European scale.

The modelling process was challenging but feasible according to the research staff since it was applied to more than 130,000 basins that cover the world's land mass (except for Antarctica). The main challenge was compiling data and evaluating their quality, as well as calibrating the model, that being the process of testing the river flow model data and the observed data to assess whether or not the model was working properly. Due to the complexity of representing the great array of global hydrological processes, the model's performance varied. Generally speaking, the model provides good results, with an average value of over 0.4 in the Kling-Gupta Efficiency metric (KGE), which is an index used to quantify the goodness of a hydrological model which classifies models of 0.4 or more as good. The Eastern US, Europe, Japan and areas of Russia, Asia, Canada and South America were the areas with the best results, with KGE values of over 0.6, demonstrating a high potential for its use in performing seasonal forecasts of river flow in these areas. Using these weather data in a six-month period, it is possible to predict river flow data for the next six months. This prediction is quite useful for staff at reservoirs and hydroelectric power plants who could, with the help of these data, manage and plan their resources better and more precisely.

The challenge of scaling and quantifying the goodness of this model, in addition to verifying the geographical location of lakes, rivers and reservoirs so that it all coincides when scaling the model, was possible thanks to the amount of free access hydrological data that are available to the research community as well as to the general public, though the river flow data in this case was scarce in many areas. This shows how open access and shared knowledge helps hydrology progress. Nevertheless, there is a lack of information, especially regarding river flow, in many areas of the world with which to carry out this verification. Thus, the idea of creating a network of collaborative science has been proposed. Using this network, researchers, managers, consultants and students working in these areas with hydrological information on a local scale could assess the model in those areas. The corresponding part of the model would be provided to those interested, with the idea of working together to verify and adjust the model by means of workshops during which the locals would give their feedback. In this way, the model's representation of reality on a global scale would improve.
-end-


University of Córdoba

Related Water Articles:

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.
Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.
Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.
The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.
Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.
What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.
How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.
Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.
Our water cycle diagrams give a false sense of water security
Pictures of the earth's water cycle used in education and research throughout the world are in urgent need of updating to show the effects of human interference, according to new analysis by an international team of hydrology experts.
Water management helped by mathematical model of fresh water lenses
In this paper, the homeostasis of water lenses was explained as an intricate interaction of the following physical factors: infiltration to the lens from occasional (sporadic) rains, permanent evaporation from the water table, buoyancy due to a density contrast of the fresh and saline water, and the force of resistance to water motion from the dune sand.
More Water News and Water Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.