Nav: Home

Plants pass on 'memory' of stress to some progeny, making them more resilient

May 05, 2020

By manipulating the expression of one gene, geneticists can induce a form of "stress memory" in plants that is inherited by some progeny, giving them the potential for more vigorous, hardy and productive growth, according to Penn State researchers, who suggest the discovery has significant implications for plant breeding.

And because the technique is epigenetic -- involving the expression of existing genes and not the introduction of new genetic material from another plant -- crops bred using this technology could sidestep controversy associated with genetically modified organisms and food.

"One gene, MSH1, gives us access to what is controlling a broad array of plant resiliency networks," said Sally Mackenzie, professor of plant science in the College of Agricultural Sciences and professor of biology in the Eberly College of Science. "When a plant experiences a stress such as drought or prolonged extreme heat, it has the ability to adjust quickly to its environment to become phenotypically 'plastic' -- or flexible."

There are many ways to inactivate the MSH1 gene, researchers explain, and in this context they all work. In well-studied plant species, like Arabidopsis, tomato or rice, it is possible to identify mutations in the gene. In others, and for commercial testing, it is possible to design a transgene that uses "RNA interference" to specifically target MSH1 for gene silencing. Any method that silences MSH1 results in very similar outcomes, they report.

"When plants are modified epigenetically, they can modify many genes in as simple a manner as possible," Mackenzie pointed out. That includes adjusting the circadian clock -- detecting light and triggering growth and reproductive phases -- and modifying hormone responses to give them maximum flexibility, making them more resilient.

Plants that "detect" stress after the MSH1 gene is silenced can adjust their growth and change root configuration, limit above-ground biomass, delay flowering time and alter their response to environmental stimuli. Those responses are "remembered," researchers reported, and passed in selective breeding through many generations.

"In our research, we show that this memory condition is heritable by progeny but occurs in only a proportion of the progeny -- so that there are memory and non-memory full siblings," said Mackenzie, the Lloyd and Dottie Huck Chair for Functional Genomics. "That results in definable gene expression changes that impact a plant's phenotypic 'plasticity.' We suggest that all plants have this capacity, and that the condition that we describe is likely to be an important part of how plants transmit memory of their environment to precondition progeny."

By adjusting the epigenetic architecture of a plant, researchers were able to access its resiliency network, and see how genes are expressed quickly and broadly to adjust a plant's growth to adapt to the environment, noted Mackenzie, director of the Plant Institute at Penn State.

The researchers identify pathways that enhance root growth and plant vigor -- increasing yield. They present their results today (May 5) in Nature Communications. When an MSH1-modified plant is crossed or grafted, this enhanced plant vigor becomes quite pronounced.

Researchers contend that plants can be "reprogrammed" epigenetically to express genes differently without altering genotype, which constitutes a non-traditional approach to breeding. Because they can now identify gene networks that appear to be targeted by this manipulation, researchers report that plants have mechanisms designed to address stress or alter growth, and these can be accessed.

The researchers focused their efforts on the small flowering plant, Arabidopsis, or rockcress, a relative of cabbage and mustard in the Brassica family. It is one of the model organisms used for studying plant biology and the first plant to have its entire genome sequenced. Arabidopsis is useful for genetic experiments because of its short generation time and prolific seed production through self-pollination. Researchers grew five generations of Arabidopsis to study "memory" and "non-memory" plants.

In follow-up research already underway in Mackenzie's lab, the researchers have suppressed MSH1 genes in tomato and soybean plants and grafting experiments have been field tested with excellent yield results. A large-scale experiment growing MSH1-modified canola is now in the works. This technology is part of a start-up company called EpiCrop Technologies Inc. that was co-founded on MSH1 technology and its utility in agriculture.
-end-
Also involved in the research at Penn State were Xiaodong Yang, a research assistant professor in the departments of Biology and Plant Science; Michael Axtell, professor of biology, Robersy Sanchez and Tom Maher, computational biologists in biology, Hardik Kundariya and Isaac Dopp, graduate students, Rosemary Schwegel, research technician in biology, and Kamaldeep Virdi, a former graduate student now employed in Texas.

The Bill and Melinda Gates Foundation, the National Science Foundation and the National Institutes of Health supported this work.

Penn State

Related Stress Articles:

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.
Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.
How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS
How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.
Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.
How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.
Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.
Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.
Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.
Maternal stress at conception linked to children's stress response at age 11
A new study published in the Journal of Developmental Origins of Health and Disease finds that mothers' stress levels at the moment they conceive their children are linked to the way children respond to life challenges at age 11.
More Stress News and Stress Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.