Bluetooth-enabled device detects fermentation process over days

May 05, 2020

WASHINGTON, May 5, 2020 -- Electrochemical reactions that occur in processes like ethanolic fermentation include the transformation of sugars into alcohol and carbon dioxide. Similar processes occur when the human body breaks down food, drugs or other compounds.

Monitoring these metabolic processes helps in testing, studying and combating disease, but due to the small quantities of liquids involved, they are difficult to study with normal equipment.

Miniaturizing devices with environmental sensing capabilities offers promise for better testing of fermentation and other biochemical processes. The ability to operate the devices wirelessly over long periods of time increases their effectiveness.

In a paper published this week in Review of Scientific Instruments, from AIP Publishing, a miniaturized potentiostat, which controls voltage between electrodes, proved capable of quantifying molecules using voltammetric and chronoamperometric methods with an accuracy above 98%. The wireless device is compatible with most 3-electrode biosensors and can transmit its measurements via Bluetooth for 100 meters.

"One of the novelties of the potentiostat circuit is to be able to process six sensors channels simultaneously without the use of multiplexers, thereby reducing the time spent on each examination," author Saad Abdullah said. "This multichannel potentiostat can examine multiple samples of different concentrations simultaneously and transfer the data over Bluetooth in real time."

The potentiostat was tested to confirm its performance under fixed resistance and quantify the current detection limits and noise in the system, as well as its accuracy and response time. Experiments showed a current detection limit of 180 nanoamperes and a plus or minus 2% standard deviation in cyclic voltammetry measurement. They also conducted an experimental test involving six different concentrations of glucose using a chronoamperometry technique.

In the experiment, the potentiostat was equipped with screen-printed electrodes modified with the enzyme glucose oxidase, which binds with the target protein and acts as an electrochemical channel between the protein and the sensor chip. When a chronoamperometric signal is applied to the sensor chip, an output current is observed in the potentiostat that is equivalent to the concentration of glucose in the sample.

The potentiostat proved capable of operating independently and transmitting data wirelessly for 24 hours in an incubator with accuracy comparable to commercially available devices. The wireless system produced a clear data signal, 180 times stronger than the noise in the circuit. This online method has the added advantage over currently available devices that data from six different biosensors can be viewed simultaneously in real time on an external monitor.
The article, "Design of multichannel potentiostat for remote and longtime monitoring of glucose concentration during yeast fermentation," is authored by Saad Abdullah, Mauro Serpelloni and Emilio Sardini. The article will appear in Review of Scientific Instruments on May 5, 2020 (DOI: 10.1063/1.5137789). After that date, it can be accessed at


Review of Scientific Instruments publishes novel advancements in scientific instrumentation, apparatuses, techniques of experimental measurement, and related mathematical analysis. Its content includes publication on instruments covering all areas of science including physics, chemistry, materials science, and biology. See

American Institute of Physics

Related Glucose Articles from Brightsurf:

Cannabinoids decrease the metabolism of glucose in the brain
What happens when THC acts on the glial cells named astrocytes ?

What drives inflammation in type 2 diabetes? Not glucose, says new research
Research led by Barbara Nikolajczyk, Ph.D., disproved the conventional wisdom that glucose was the primary driver of chronic inflammation in type 2 diabetes.

ALS patients may benefit from more glucose
A new study led by scientists at the UA has uncovered a potential new way to treat patients with ALS, a debilitating neurodegenerative disease.

Artificial muscles powered by glucose
Artificial muscles made from polymers can now be powered by energy from glucose and oxygen, just like biological muscles.

Efficiently producing fatty acids and biofuels from glucose
Researchers have presented a new strategy for efficiently producing fatty acids and biofuels that can transform glucose and oleaginous microorganisms into microbial diesel fuel, with one-step direct fermentative production.

Protein released from fat after exercise improves glucose
Exercise training causes dramatic changes to fat. Additionally, this 'trained' fat releases beneficial factors into the bloodstream.

WSU researchers create 3D-printed glucose biosensors
A 3D-printed glucose biosensor for use in wearable monitors has been created by Washington State University researchers.

Gut protein mutations shield against spikes in glucose
Why is it that, despite consuming the same number of calories, sodium and sugar, some people face little risk of diabetes or obesity while others are at higher risk?

Glucose binding molecule could transform the treatment of diabetes
Scientists from the University of Bristol have designed a new synthetic glucose binding molecule platform that brings us one step closer to the development of the world's first glucose-responsive insulin which, say researchers, will transform the treatment of diabetes.

Nutrients may reduce blood glucose levels
One amino acid, alanine, may produce a short-term lowering of glucose levels by altering energy metabolism in the cell.

Read More: Glucose News and Glucose Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to