Nav: Home

Broadband enhancement relies on precise tilt

May 05, 2020

WASHINGTON, May 5, 2020 -- Quantum photonics involves a new type of technology that relies on photons, the elementary particle of light. These photons can potentially carry quantum bits of information over large distances. If the photon source could be placed on a single chip and made to produce photons at a high rate, this could enable high-speed quantum communication or information processing, which would be a major advance in information technologies.

In this week's issue of Applied Physics Reviews, from AIP Publishing, a simple on-chip photon source using a type of material known as a hyperbolic metamaterial is proposed. The investigators carried out calculations to show that a prototype using the hyperbolic metamaterial arranged in a precise way can overcome problems of low efficiency and allow for high repetition rates for on-chip photon sources.

Until recently, single-photon sources have usually been made from self-assembled quantum dots in semiconductors or from materials, like diamonds, with structural defects. It is difficult, however, to produce single photons at high rates from such materials. Some approaches to remedy this problem have been tried, but so far, the results suffer from a narrow bandwidth and low efficiency.

Another way to approach these problems is to use special materials, such as metamaterials, for the photon source. Metamaterials are stacks of metallic and dielectric layers, structured at a level much smaller than the wavelength of light in use. They exhibit unusual optical properties when formed into shapes, such as nanowires. Electrons flowing through the material set up a collective oscillation known as a surface plasmon, generating localized electromagnetic fields.

Hyperbolic metamaterials are highly anisotropic versions of these metamaterials. They manipulate light in a variety of ways. For example, they can shrink the wavelength of light and allow it to travel freely in one direction while stopping it in another.

The investigators propose a geometry for their on-chip photon source where a hyperbolic metamaterial is tilted at a precise angle with respect to the end facet of the nearby nanofiber used to transmit the emitted photons. By choosing the tilt angle carefully, light reflections are suppressed at the interface with the fiber.

Calculations by the group showed that this simple geometrical arrangement should overcome previous limitations with these materials.

Co-author Lian Shen said, "Our work represents a vital step toward the implementation of spectrally broad single photon sources with high repetition rates for on-chip quantum networks."
-end-
The article, "Broadband enhancement of on-chip single photon extraction via tilted hyperbolic metamaterials," is authored by Lian Shen, Xiao Lin, Mikhail Shalaginov, Tony Low, Xianmin Zhang, Baile Zhang and Hongsheng Chen. The article will appear in Applied Physics Reviews on May 5, 2020 (DOI: 10.1063/1.5141275). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5141275.

ABOUT THE JOURNAL

Applied Physics Reviews features articles on significant and current topics in experimental or theoretical research in applied physics, or in applications of physics to other branches of science and engineering. The journal publishes both original research on pioneering studies of broad interest to the applied physics community, and reviews on established or emerging areas of applied physics. See https://aip.scitation.org/journal/are.

American Institute of Physics

Related Metamaterials Articles:

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''
Origami metamaterials show reversible auxeticity combined with deformation recoverability
New research by Northwestern Engineering and Georgia Institute of Technology expands the understanding of origami structures, opening possibilities for mechanical metamaterials to be used in soft robotics and medical devices.
Temporal aiming with temporal metamaterials
Achieving a controllable manipulation of electromagnetic waves is important in many applications.
VR and AR devices at 1/100 the cost and 1/10,000 the thickness in the works
Professor Junsuk Rho of the departments of mechanical engineering and chemical engineering and doctoral student in mechanical engineering Gwanho Yoon at POSTECH with the research team at Korea University have jointly developed moldable nanomaterials and a printing technology using metamaterials, allowing the commercialization of inexpensive and thin VR and AR devices.
Virtualized metamaterials opens door for acoustics application and beyond
Scientists from the Hong Kong University of Science and Technology (HKUST) have realized what they called a virtualized acoustic metamaterial, in digitizing material response to an impulse response stored in a software program.
In acoustic waves, engineers break reciprocity with 'spacetime-varying metamaterials'
Working in an emerging field known to as 'spacetime-varying metamaterials,' University at Buffalo engineers have demonstrated the ability to break reciprocity in acoustic waves.
Induced flaws in metamaterials can produce useful textures and behavior
A new Tel Aviv University study shows how induced defects in metamaterials -- artificial materials the properties of which are different from those in nature -- also produce radically different consistencies and behaviors.
Researchers use metamaterials to create two-part optical security features
Researchers have developed advanced optical security features that use a two-piece metamaterial system to create a difficult-to-replicate optical phenomenon.
Artificial intelligence (AI) designs metamaterials used in the invisibility cloak
The research group of Prof. Junsuk Rho, Sunae So and Jungho Mun of Department of Mechanical Engineering and Department of Chemical Engineering at POSTECH developed a design with a higher degree of freedom which allows to choose materials and to design photonic structures arbitrarily by using Deep Learning.
Scientists take a 'metamaterials' approach to earthquake damage
At the SSA 2019 Annual Meeting, seismologists from around the world will discuss how metamaterial theory might be applied to everything from developing deflective barriers to manipulating the layout of buildings within a city as a way to minimize the impact of damaging surface seismic waves.
More Metamaterials News and Metamaterials Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.