Nav: Home

Worms freeload on bacterial defence systems

May 05, 2020

Scientists have untangled a sensory circuit in worms that allows them to choose whether to spend energy on self-defence or rely on the help of nearby bacteria, a new study in eLife reveals.

The paper describes a novel sensory circuit that, if also conserved in humans, could be used to switch on defence mechanisms and improve health and longevity.

Bacteria, fungi, plants and animals all excrete hydrogen peroxide as a weapon. In defence, cells use enzymes called catalases to break down hydrogen peroxide into water and oxygen. But it is not known whether this mechanism is coordinated across different cells.

"We speculated that coordinating these hydrogen peroxide cell defences based on environmental cues would be beneficial because it would save the energetic cost of protection," explains lead author Jodie Schiffer, a graduate student at Northeastern University, Boston, US. "We used the worm Caenorhabditis elegans to study whether the brain plays a role in this coordination by collecting and integrating information from the environment."

Schiffer and her team found 10 different classes of sensory neurons in the worms that could positively or negatively control peroxide resistance. Among them was a pair of neurons that sense taste and temperature and caused the largest increase in peroxide resistance, which the team decided to study further.

To determine how the neurons transmit messages to tell the worm to change its peroxide defence mechanisms, the team set out to identify the hormones involved. They found that when the worms lacked a hormone called DAF-7, it doubled peroxide resistance. In a process of gene elimination, they established that the neurons release DAF-7, which in turn signals through a well-known communication pathway, via cells called interneurons, to coordinate with defence systems in the intestine. Together, these control the worm's peroxide resistance.

As worms can be exposed to peroxides through food, and those with faulty DAF-7 hormones have feeding defects, the team next explored whether feeding directly affects peroxide defenses. They placed worms that had never been exposed to peroxides on plates of Escherichia coli (E. coli) bacteria - their preferred snack - and then measured peroxide resistance. They found that worms grown on plates with the most E. coli were most resistant to peroxides. By contrast, worms grown without E. coli for only two days had a six-fold drop in peroxide resistance. Worms with a mutation that slows down their eating also had lower peroxide resistance. Taken together, these results suggest that the presence of E. coli was important for peroxide resistance.

To test this, they looked at whether the bacteria can protect worms from the lethal effects of peroxides. They exposed worms to high amounts of hydrogen peroxide that would normally kill them. In the presence of a mutant E. coli that cannot produce the hydrogen-peroxide-degrading catalase enzyme, the worms were killed, whereas in the presence of wild-type E. coli, they were protected.

"We have identified a sensory circuit in the worm's brain that helps them decide when it is appropriate to use their own defences and when it is best to freeload on the protection given by others in the environment," concludes senior author Javier Apfeld, Assistant Professor at Northeastern University. "Because sensory perception and catalases also determine health and longevity in other animals, it is possible that sensory modulation could be a promising approach for switching on defence systems that could improve health and increase lifespan."
-end-
Reference

The paper 'Caenorhabditis elegans processes sensory information to choose between freeloading and self-defence strategies' can be freely accessed online at https://doi.org/10.7554/eLife.56186. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contact

Emily Packer, Senior Press Officer
eLife
e.packer@elifesciences.org
01223 855373

About eLife

eLife is a non-profit organisation created by funders and led by researchers. Our mission is to accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours. We work across three major areas: publishing, technology and research culture. We aim to publish work of the highest standards and importance in all areas of biology and medicine, including Developmental Biology and Neuroscience, while exploring creative new ways to improve how research is assessed and published. We also invest in open-source technology innovation to modernise the infrastructure for science publishing and improve online tools for sharing, using and interacting with new results. eLife receives financial support and strategic guidance from the Howard Hughes Medical Institute, the Knut and Alice Wallenberg Foundation, the Max Planck Society and Wellcome. Learn more at https://elifesciences.org/about.

To read the latest Developmental Biology research published in eLife, visit https://elifesciences.org/subjects/developmental-biology.

And for the latest in Neuroscience, see https://elifesciences.org/subjects/neuroscience.

eLife

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.