Nav: Home

Study reveals final fate of levitating Leidenfrost droplets

May 06, 2019

PROVIDENCE, R.I. [Brown University] -- Splash some water on a hot skillet, and you'll often see the droplets sizzle and quickly evaporate. But if you really crank up the heat, something different happens. The droplets stay intact, dancing and skittering over the surface in what's known as the Leidenfrost effect. Now a team of researchers has detailed how these Leidenfrost droplets meet their ultimate fate.

In a paper published in Science Advances, the team shows that Leidenfrost droplets that start off small eventually rocket off the hot surface and disappear, while larger drops explode violently with an audible "crack." Whether the droplet finally explodes or escapes depends on its initial size and the amount of solid contaminants -- ambient dust or dirt particles -- the droplet contains.

In addition to explaining the cracking sound that Johann Gottlob Leidenfrost reported hearing in 1756 when he documented the phenomenon, the findings could prove useful in future devices -- cooling systems or particle transport and deposition devices -- that may make use of the Leidenfrost effect.

"This answers the 250-year-old question of what produces this cracking sound," said Varghese Mathai, a postdoctoral researcher at Brown University and the study's co-lead author. "We couldn't find any prior attempts in the literature to explain the source of the crack sound, so it's a fundamental question answered."

The research, published in Science Advances, was a collaboration between Mathai at Brown, co-lead author Sijia Lyu from Tsinghua University and other researchers from Belgium, China and the Netherlands.

In the years since Leidenfrost observed this peculiar behavior in water droplets, scientists have figured out the physics of how the levitation phenomenon occurs. When a liquid drop comes into contact with a surface that's well beyond the liquid's boiling point, a cushion of vapor forms beneath the droplet. That vapor cushion supports the drop's weight. The vapor also insulates the drop and slows its rate of evaporation while enabling it to glide around as if it were on a magic carpet. For water, this happens when it encounters a surface in excess of around 380 degrees Fahrenheit. This Leidenfrost temperature varies for other liquids like oils or alcohol.

A few years back, a different research team observed the ultimate fate of tiny Leidenfrost drops, showing that they steadily shrink in size and then suddenly launch off the surface and disappear. But that didn't explain the cracking sound Leidenfrost heard, and no one had done a detailed study to see where that sound came from.

For this new study, the researchers set up cameras at recording speeds up to 40,000 frames per second and sensitive microphones to observe and listen to individual drops of ethanol above their Leidenfrost temperatures. They found that when the droplets started out relatively small, they behaved in the way that the previous researchers had observed -- shrinking and then escaping. At a certain point, when these droplets become sufficiently small and lightweight, the vapor flow around them causes them to suddenly fling into the air where they finally disappear.

But when droplets start out a millimeter in diameter or larger, the study showed, something very different happens. The larger drops steadily shrink, but they don't get small enough to fly away. Instead, the larger droplets steadily sink toward the hot surface below. Eventually the droplet makes contact with the surface, where it explodes with an audible crack. So why don't those larger droplets shrink down enough to take flight like the droplets that start out smaller? That, the researchers say, is a matter of contaminants.

No liquid is ever perfectly pure. They all have tiny particle contaminants -- dust and other particles that influence the Leidenfrost process. As droplets shrink, the concentration of particle contaminants within them increases. That's especially true for drops that start out larger because they have a higher absolute of particles to start with. So for drops that start out large, the researchers surmised, the concentration of contaminants can become so high that the particles accumulate into a solid shell along the droplet's surface. That shell cuts off the supply of vapor that forms the cushion beneath. As a result, the droplet sinks toward the hot surface beneath and explodes on contact.

To test this idea, the researchers observed liquid droplets that had different levels of contamination with titanium dioxide microparticles. They found that as the contaminant level increased, so did the average size of the droplets at the moment of explosion. The research was also able to image the contaminant shells among the explosion debris.

Taken together, the evidence suggests that even minute quantities of contaminants play a key role in determining the fate of Leidenfrost droplets. The finding could have practical applications beyond just explaining the cracking sound that Leidenfrost first reported.

Recent research has shown that the direction in which Leidenfrost drops move can be controlled. That could make them useful as levitating particle carriers in microelectronic fabrication processes. There's also the possibility of using Leidenfrost drops in heat exchangers that are designed to keep electronic components at specific temperatures.

"You can use these contaminants to change the lifetime of a Leidenfrost droplet," Mathai said. "So you can figure out in principle where it's going to deposit the particles, or control how long the heat transfer persists by fine-tuning the amount of contaminants."

The research results could potentially be used to develop new purity testing methods for water and other liquids because the size at which droplets explode is so closely linked to its contaminant load.

Brown University

Related Contaminants Articles:

Co-occurring contaminants may increase NC groundwater risks
Eighty-four percent of the wells sampled in the Kings Mountain Belt and the Charlotte and Milton Belts of the Piedmont region of North Carolina contained concentrations of vanadium and hexavalent chromium that exceeded health recommendations from the North Carolina Department of Health and Human Services.
Study estimates more than 100,000 cancer cases could stem from contaminants in tap water
A toxic cocktail of chemical pollutants in US drinking water could result in more than 100,000 cancer cases, according to a peer-reviewed study from Environmental Working Group -- the first study to conduct a cumulative assessment of cancer risks due to 22 carcinogenic contaminants found in drinking water nationwide.
Microbe chews through PFAS and other tough contaminants
In a series of lab tests, a relatively common soil bacterium has demonstrated its ability to break down the difficult-to-remove class of pollutants called PFAS, researchers at Princeton University said.
Urban stormwater could release contaminants to ground, surface waters
A good rainstorm can make a city feel clean and revitalized.
Bronx river turtles get a check-up
A team of scientists and veterinarians gave a health evaluation of turtles living in the Bronx River, one of the most urbanized rivers in the U.S. and the only remaining freshwater river that flows through New York City.
Microbial contaminants found in popular e-cigarettes
Popular electronic cigarette (e-cigarette) products sold in the US were contaminated with bacterial and fungal toxins, according to new research from Harvard T.H.
High negative pressure limits dispersion of airborne contaminants in hospitals and renovation sites
Maintaining a high negative pressure in airborne infection isolation rooms of hospitals (over -10 Pa) and in renovation sites (over -5 Pa) effectively limits the dispersion of airborne contaminants and dust, a new study from the University of Eastern Finland shows.
Newly discovered bacterium rids problematic pair of toxic groundwater contaminants
NJIT researchers have detailed the discovery of the first bacterium known capable of simultaneously degrading the pair of chemical contaminants -- 1,4-Dioxane and 1,1-DCE.
Pharmaceuticals and other contaminants force fish to work much harder to survive
Pharmaceuticals and other man-made contaminants are forcing fish that live downstream from a typical sewage treatment plant to work at least 30 percent harder just to survive, McMaster researchers have found.
Study investigates the presence of contaminants on drinking water
Comparative analysis between sanitation systems in Brazil and the USA shows the need to apply new technologies for the treatment of chemical compounds created by men, some of them endocrine deregulators.
More Contaminants News and Contaminants Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at