Nav: Home

Mechanics, chemistry and biomedical research join forces for noninvasive tissue therapy

May 06, 2019

CHAMPAIGN, Ill. -- A fortuitous conversation between two University of Illinois scientists has opened a new line of communication between biomedical researchers and the tissues they study. The new findings, reported in the Proceedings of the National Academy of Sciences, show that high-intensity focused ultrasound waves can penetrate biological tissue to activate molecules able to perform specific tasks.

The research, conducted in vitro and in mice, addresses the challenges of noninvasive access to deep tissue for therapeutic purposes without causing permanent damage. The study successfully demonstrates the ability to trigger chemical reactions on demand, in a very targeted manner while using a technology already approved for medical use.

"In the broadest sense, we are trying to develop remote-controlled systems that can eventually be used in biomedical applications," said King Li, the dean of the Carle Illinois College of Medicine, a researcher at the Beckman Institute for Advanced Science and Technology at Illinois and a study co-author.

"I learned that King was interested in finding a way to remotely activate genes using light - a field called optogenetics," said Jeffrey Moore, the director of the Beckman Institute, a chemistry professor and a study co-author. "This presented a great opportunity to tell him about my research in synthetic polymer chemistry and mechanics."

Moore studies synthetic molecules called mechanophores that respond to force by changing color or generating light - something he believed could harness the mechanical force of an ultrasound wave and trigger a chemical reaction that emits light. The concept is exactly what Li was seeking.

Light cannot travel through opaque material, but ultrasound waves - which have a well-documented safety record - can, the researchers said.

"Light has a limited penetration range in opaque materials, including living tissues," Li said. "The ability to use ultrasound to penetrate opaque materials and then trigger mechanophores to produce light deep within these materials will open up many possibilities for applications such as gene activation."

Although the researchers have successfully demonstrated remote generation of light in biologic tissue without causing damage, the intensity of that light is still not enough for optogenetic applications.

"We are getting close," Moore said. "When we completed the study, we were within about a factor of 10 of the light intensity needed to switch on genes, but now we are closer to a factor of two."

The interdisciplinary team of study co-authors, which includes electrical and computer engineering professor Michael Oelze and Beckman Institute researchers Gun Kim, Vivian Lau and Abigail Halmes, continues to refine the technique and seek other biomedical applications.

"This combination of high-intensity focused ultrasound and mechanophores can be utilized for many applications, and light production is only the beginning," Li said. "We are already actively exploring other applications."
-end-
Editor's notes:

To reach Jeffrey Moore, call 217-244-5289; jsmoore@illinois.edu.

To reach King Li, call 217-300-5700; kngli@illinois.edu

The paper "High-intensity focused ulatrasound-induced mechanochemical transduction in synthetic elastomers" is available from the U. of I. News Bureau.

University of Illinois at Urbana-Champaign, News Bureau

Related Ultrasound Articles:

World's first ultrasound biosensor created in Australia
Most implantable monitors for drug levels and biomarkers invented so far rely on high tech and expensive detectors such as CT scans or MRI.
Ultrasound can make stronger 3D-printed alloys
A study just published in Nature Communications shows high frequency sound waves can have a significant impact on the inner micro-structure of 3D printed alloys, making them more consistent and stronger than those printed conventionally.
Full noncontact laser ultrasound: First human data
Conventional ultrasonography requires contact with the patient's skin with the ultrasound probe for imaging, which causes image variability due to inconsistent probe contact pressure and orientation.
Ultrasound aligns living cells in bioprinted tissues
Researchers have developed a technique to improve the characteristics of engineered tissues by using ultrasound to align living cells during the biofabrication process.
Ultrasound for thrombosis prevention
Researchers established real-time ultrasonic monitoring of the blood's aggregate state using the in vitro blood flow model.
Ultra ultrasound to transform new tech
A new, more sensitive method to measure ultrasound may revolutionize everything from medical devices to unmanned vehicles.
Shoulder 'brightness' on ultrasound may be a sign of diabetes
A shoulder muscle that appears unusually bright on ultrasound may be a warning sign of diabetes, according to a new study.
Ultrasound-firewall for mobile phones
Mobile phones and tablets through so-called audio tracking, can be used by means of ultrasound to unnoticeably track the behaviour of their users: for example, viewing certain videos or staying in specific rooms and places.
Designing a new material for improved ultrasound
Development of a theoretical basis for ultrahigh piezoelectricity in ferroelectric materials led to a new material with twice the piezo response of any existing commercial ferroelectric ceramics, according to an international team of researchers from Penn State, China and Australia.
Atomic structure of ultrasound material not what anyone expected
Lead magnesium niobate (PMN) is a prototypical
More Ultrasound News and Ultrasound Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.